Multiplexed electrospray enables high throughput production of cGAMP microparticles to serve as an adjuvant for a broadly acting influenza vaccine

Autor: Cole J. Batty, Matthew D. Gallovic, Jonathan Williams, Ted M. Ross, Eric M. Bachelder, Kristy M. Ainslie
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Zdroj: Int J Pharm
Popis: Subunit vaccines employing designer antigens such as Computationally Optimized Broadly Reactive Antigen (COBRA) hemagglutinin (HA) hold the potential to direct the immune response toward more effective and broadly-neutralizing targets on the Influenza virus. However, subunit vaccines generally require coadministration with an adjuvant to elicit a robust immune response. One such adjuvant is the stimulator of interferon genes (STING) agonist cyclic dinucleotide 3'3'-cyclic guanosine monophosphate-adenosine monophosphate (cGAMP). We have shown that encapsulation of cGAMP in acetalated dextran (Ace-DEX) microparticles through electrospray results in significantly greater biological activity. Electrospray is a continuous manufacturing process which achieves excellent encapsulation efficiency. However, the throughput of electrospray with a single spray head is limited. Here we report the development of a multiplexed electrospray apparatus with an order of magnitude greater throughput than a single-head apparatus. Physicochemical characterization and evaluation of adjuvant activity in vitro and in vivo indicated that microparticles produced with the higher throughput process are equally suited for use as a potent vaccine adjuvant to induce a balanced immune response to COBRA HA antigens.
Databáze: OpenAIRE