Regulation of myosin heavy chain antisense long noncoding RNA in human vastus lateralis in response to exercise training
Autor: | Leslie P Carroll, Clay E. Pandorf, Fadia Haddad, Gregory R. Adams, Tomasz Owerkowicz, Kenneth M. Baldwin |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: |
0301 basic medicine
Adult Male Physiology Biopsy chemical and pharmacologic phenomena Biology Major histocompatibility complex Quadriceps Muscle 03 medical and health sciences Young Adult 0302 clinical medicine Transcription (biology) Gene expression Myosin Humans RNA Antisense Muscle Skeletal Gene Exercise Myosin Heavy Chains RNA Cell Biology Long non-coding RNA Antisense RNA Cell biology 030104 developmental biology Gene Expression Regulation biology.protein Female RNA Long Noncoding 030217 neurology & neurosurgery Research Article |
Zdroj: | Am J Physiol Cell Physiol |
Popis: | Alterations to muscle activity or loading state can induce changes in expression of myosin heavy chain (MHC). For example, sedentary individuals that initiate exercise training can induce a pronounced shift from IIx to IIa MHC. We sought to examine the regulatory response of MHC RNA in human subjects in response to exercise training. In particular, we examined how natural antisense RNA transcripts (NATs) are regulated throughout the MHC gene locus that includes MYH2 (IIa), MYH1 (IIx), MYH4 (IIb), and MYH8 (Neonatal) in vastus lateralis before and after a 5-wk training regime that consisted of a combination of aerobic and resistance types of exercise. The exercise program induced a IIx to IIa MHC shift that was associated with a corresponding increase in transcription on the antisense strand of the IIx MHC gene and a decrease in antisense transcription of the IIa MHC gene, suggesting an inhibitory mechanism mediated by NATs. We also report that the absence of expression of IIb MHC in human limb muscle is associated with the abundant expression of antisense transcript overlapping the IIb MHC coding gene, which is the opposite expression pattern as compared with that previously observed in rats. The NAT provides a possible regulatory mechanism for the suppressed expression of IIb MHC in humans. These data indicate that NATs may play a regulatory role with regard to the coordinated shifts in MHC gene expression that occur in human muscle in response to exercise training. |
Databáze: | OpenAIRE |
Externí odkaz: |