Frequency Response Based Multivariable Feedback Control Design for Transient RCCI Engine Operation
Autor: | Jan Verhaegh, Frank Kupper, Frank Willems |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: |
0209 industrial biotechnology
Frequency response Experimental validation Computer science Multivariable calculus 020208 electrical & electronic engineering MIMO 02 engineering and technology Decoupling (cosmology) LPV control Engine control Decoupling design 020901 industrial engineering & automation Control and Systems Engineering Control theory Frequency domain Multivariable control 0202 electrical engineering electronic engineering information engineering Torque Transient (oscillation) System identification Frequency response function |
Zdroj: | IFAC-PapersOnLine. 53(2):14008-14015 |
ISSN: | 2405-8963 |
DOI: | 10.1016/j.ifacol.2020.12.921 |
Popis: | Reactivity Controlled Compression Ignition (RCCI) is a high efficient, pre-mixed combustion concept, which is characterized by controlled auto-ignition. RCCI control has to guarantee stable and safe operation for varying operating conditions. Research concentrated on next-cycle fuel path control, so far. However, a crucial step towards on-road implementation is accurate control of both air and fuel path, especially during transients. In this work, a systematic, frequency domain-based design method is presented for coordinated air-fuel path control. Starting from MIMO system identification using Frequency Response Functions, cylinder individual combustion models are developed. Based on these models, a static decoupling matrix and five SISO PI controllers are designed. The followed method allows to analyze and guarantee local robust stability, disturbance rejection and reference tracking properties. For transients, the controller is scheduled as a function of engine speed and torque. The potential of the designed MIMO controller is demonstrated on a six-cylinder Diesel-E85 RCCI engine. This controller shows good reference tracking for engine speed-load variations. Furthermore, it enables safe RCCI operation towards higher loads compared to open-loop control strategies. |
Databáze: | OpenAIRE |
Externí odkaz: |