Decoding accelerometry for classification and prediction of critically ill patients with severe brain injury

Autor: Bhattacharyay, Shubhayu, Rattray, John, Wang, Matthew, Dziedzic, Peter H, Calvillo, Eusebia, Kim, Han B, Joshi, Eshan, Kudela, Pawel, Etienne-Cummings, Ralph, Stevens, Robert D
Přispěvatelé: Bhattacharyay, Shubhayu [0000-0001-7428-5588], Apollo - University of Cambridge Repository, Kim, Han B [0000-0001-5929-8444], Joshi, Eshan [0000-0001-5786-4078], Etienne-Cummings, Ralph [0000-0003-4445-973X], Stevens, Robert D [0000-0001-5984-7837]
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: Scientific Reports
Scientific Reports, Vol 11, Iss 1, Pp 1-17 (2021)
ISSN: 2045-2322
Popis: Funder: Gates Cambridge Trust; doi: http://dx.doi.org/10.13039/501100005370
Funder: Office of the Provost, Johns Hopkins University; doi: http://dx.doi.org/10.13039/100012800
Our goal is to explore quantitative motor features in critically ill patients with severe brain injury (SBI). We hypothesized that computational decoding of these features would yield information on underlying neurological states and outcomes. Using wearable microsensors placed on all extremities, we recorded a median 24.1 (IQR: 22.8-25.1) hours of high-frequency accelerometry data per patient from a prospective cohort (n = 69) admitted to the ICU with SBI. Models were trained using time-, frequency-, and wavelet-domain features and levels of responsiveness and outcome as labels. The two primary tasks were detection of levels of responsiveness, assessed by motor sub-score of the Glasgow Coma Scale (GCSm), and prediction of functional outcome at discharge, measured with the Glasgow Outcome Scale-Extended (GOSE). Detection models achieved significant (AUC: 0.70 [95% CI: 0.53-0.85]) and consistent (observation windows: 12 min-9 h) discrimination of SBI patients capable of purposeful movement (GCSm > 4). Prediction models accurately discriminated patients of upper moderate disability or better (GOSE > 5) with 2-6 h of observation (AUC: 0.82 [95% CI: 0.75-0.90]). Results suggest that time series analysis of motor activity yields clinically relevant insights on underlying functional states and short-term outcomes in patients with SBI.
Databáze: OpenAIRE