Nonlinearity of energy of Rankine flows on a torus
Autor: | Masaaki Ito, Masakazu Shiba |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2001 |
Předmět: |
Linear function (calculus)
Plane (geometry) Applied Mathematics Mathematical analysis Torus Function (mathematics) Quadratic function Energy of a flow Domain (mathematical analysis) Ideal fluid flows on a torus Physics::Fluid Dynamics Bounded function Weierstrass ζ-function Streamlines streaklines and pathlines Analysis Mathematics |
Zdroj: | Nonlinear Analysis. 47(8):5467-5477 |
Popis: | E We study an ideal fluid flow on a torus described by the Weierstrass ^-function. In spite of the analogy of this function to the Joukowski transformation on the plane the convex (planar) domain bounded by two streamlines passing through the stagnation points is not a disk. The energy of the flowoutside the convex domain is generally nonlinear function of the strength of the dipole; in fact the energy is in only two cases a linear function of the strength, and otherwise it is a quadratic function. |
Databáze: | OpenAIRE |
Externí odkaz: |