A critical review on the implementation of static data sampling techniques to detect network attacks

Autor: Christophe Guyeux, Dominique Ginhac, Abdallah Makhoul, Jacques Demerjian, Rayane El Sibai, Suzan Hajj, Jacques Bou Abdo
Přispěvatelé: Université Bourgogne Franche-Comté [COMUE] (UBFC), Al Maaref University (MU), Franche-Comté Électronique Mécanique, Thermique et Optique - Sciences et Technologies (UMR 6174) (FEMTO-ST), Université de Technologie de Belfort-Montbeliard (UTBM)-Ecole Nationale Supérieure de Mécanique et des Microtechniques (ENSMM)-Université de Franche-Comté (UFC), Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université Bourgogne Franche-Comté [COMUE] (UBFC)-Centre National de la Recherche Scientifique (CNRS)
Jazyk: angličtina
Rok vydání: 2021
Předmět:
General Computer Science
Computer science
020209 energy
Real-time computing
intrusion detection system (IDS)
data streams
Context (language use)
02 engineering and technology
Intrusion detection system
[INFO.INFO-SE]Computer Science [cs]/Software Engineering [cs.SE]
Data sampling
[INFO.INFO-IU]Computer Science [cs]/Ubiquitous Computing
[INFO.INFO-CR]Computer Science [cs]/Cryptography and Security [cs.CR]
statistical analysis
Sampling process
0202 electrical engineering
electronic engineering
information engineering

General Materials Science
Static data
General Engineering
Volume (computing)
Process (computing)
Sampling (statistics)
Internet traffic
[INFO.INFO-MO]Computer Science [cs]/Modeling and Simulation
TK1-9971
[INFO.INFO-MA]Computer Science [cs]/Multiagent Systems [cs.MA]
020201 artificial intelligence & image processing
[INFO.INFO-ET]Computer Science [cs]/Emerging Technologies [cs.ET]
Electrical engineering. Electronics. Nuclear engineering
[INFO.INFO-DC]Computer Science [cs]/Distributed
Parallel
and Cluster Computing [cs.DC]
Zdroj: IEEE Access
IEEE Access, IEEE, 2021, 9, pp.138903-138938
IEEE Access, Vol 9, Pp 138903-138938 (2021)
ISSN: 2169-3536
Popis: International audience; Given that the Internet traffic speed and volume are growing at a rapid pace, monitoring the network in a real-time manner has introduced several issues in terms of computing and storage capabilities. Fast processing of traffic data and early warnings on the detected attacks are required while maintaining a single pass over the traffic measurements. To palliate these problems, one can reduce the amount of traffic to be processed by using a sampling technique and detect the attacks based on the sampled traffic. Different parameters have an impact on the efficiency of this process, mainly, the applied sampling policy and sampling ratio. In this paper, we investigate the statistical impact of sampling the network traffic and we quantify the amount of deterioration that the sampling process introduces. In this context, an experimental comparison of existing sampling techniques is performed based on their impact on several well-known statistical measures.
Databáze: OpenAIRE