Simplex-based screening designs for estimating metamodels
Autor: | Gilles Pujol |
---|---|
Přispěvatelé: | Département Méthodes et Modèles Mathématiques pour l'Industrie (3MI-ENSMSE), École des Mines de Saint-Étienne (Mines Saint-Étienne MSE), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)-Centre G2I, Méthodes d'Analyse Stochastique des Codes et Traitements Numériques (GdR MASCOT-NUM), Centre National de la Recherche Scientifique (CNRS), Consortium DICE (Deep Inside Computer Experiments) |
Rok vydání: | 2009 |
Předmět: |
Elementary effects method
Simplex Design of experiments [STAT.TH]Statistics [stat]/Statistics Theory [stat.TH] Factorial experiment Computer experiment Industrial and Manufacturing Engineering Metamodeling Simplex algorithm [MATH.MATH-ST]Mathematics [math]/Statistics [math.ST] Sample size determination Safety Risk Reliability and Quality Algorithm Mathematics |
Zdroj: | Reliability Engineering and System Safety Reliability Engineering and System Safety, Elsevier, 2009, 94 (7), pp.1156-1160. ⟨10.1016/j.ress.2008.08.002⟩ |
ISSN: | 0951-8320 1879-0836 |
DOI: | 10.1016/j.ress.2008.08.002 |
Popis: | International audience; The screening method proposed by Morris in 1991 allows to identify the important factors of a model, including those involved in interactions. This method, known as the elementary effects method, relies on a “one-factor-at-a-time” (OAT) design of experiments, i.e. two successive points differ only by one factor. In this article, we introduce a non-OAT simplex-based design for the elementary effects method. Its main advantage, compared to Morris's OAT design, is that the sample size doesn't collapse when the design is projected on sub-spaces spanned by groups of factors. The use of this design to estimate a metamodel depending only on the (screened) important factors is discussed. |
Databáze: | OpenAIRE |
Externí odkaz: |