Thermodynamics and signatures of criticality in a network of neurons

Autor: Thierry Mora, Michael J. Berry, Dario Amodei, Gašper Tkačik, Olivier Marre, William Bialek, Stephanie E. Palmer
Přispěvatelé: Institute of Science and Technology [Klosterneuburg, Austria] (IST Austria), Laboratoire de Physique Statistique de l'ENS (LPS), Fédération de recherche du Département de physique de l'Ecole Normale Supérieure - ENS Paris (FRDPENS), École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Institut de la Vision, Institut National de la Santé et de la Recherche Médicale (INSERM)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Princeton University, Marre, Olivier
Rok vydání: 2015
Předmět:
Hot Temperature
Nerve net
[SDV]Life Sciences [q-bio]
Entropy
Monte Carlo method
MESH: Neurons
information
MESH: Animals
Statistical physics
Monte Carlo
Mathematics
Neurons
Multidisciplinary
Artificial neural network
MESH: Retina
Brain
neural networks
MESH: Entropy
MESH: Reproducibility of Results
[SDV] Life Sciences [q-bio]
medicine.anatomical_structure
Criticality
Physical Sciences
Thermodynamics
MESH: Thermodynamics
Monte Carlo Method
Algorithms
MESH: Probability
Models
Neurological

Urodela
MESH: Algorithms
MESH: Monte Carlo Method
MESH: Hot Temperature
Retina
MESH: Brain
MESH: Models
Neurological

medicine
Entropy (information theory)
Animals
Probability
Models
Statistical

Quantitative Biology::Neurons and Cognition
Reproducibility of Results
Numerosity adaptation effect
MESH: Urodela
MESH: Nerve Net
correlation
Thermodynamic limit
Neuron
Nerve Net
Neuroscience
MESH: Models
Statistical
Zdroj: Proceedings of the National Academy of Sciences of the United States of America
Proceedings of the National Academy of Sciences of the United States of America, 2015, 112 (37), pp.11508-11513. ⟨10.1073/pnas.1514188112⟩
ISSN: 1091-6490
0027-8424
Popis: International audience; The activity of a neural network is defined by patterns of spiking and silence from the individual neurons. Because spikes are (relatively) sparse, patterns of activity with increasing numbers of spikes are less probable, but, with more spikes, the number of possible patterns increases. This tradeoff between probability and numerosity is mathematically equivalent to the relationship between entropy and energy in statistical physics. We construct this relationship for populations of up to N = 160 neurons in a small patch of the vertebrate retina, using a combination of direct and model-based analyses of experiments on the response of this network to naturalistic movies. We see signs of a thermodynamic limit, where the entropy per neuron approaches a smooth function of the energy per neuron as N increases. The form of this function corresponds to the distribution of activity being poised near an unusual kind of critical point. We suggest further tests of criticality, and give a brief discussion of its functional significance.
Databáze: OpenAIRE