Integrality of the Chern character in small codimension
Autor: | Olivier Haution |
---|---|
Rok vydání: | 2012 |
Předmět: |
Mathematics(all)
Pure mathematics Grothendieck–Riemann–Roch theorem General Mathematics Modulo Positive characteristic 01 natural sciences Mathematics - Algebraic Geometry Mathematics::K-Theory and Homology 0103 physical sciences FOS: Mathematics 0101 mathematics Algebraic Geometry (math.AG) Mathematics 010102 general mathematics K-Theory and Homology (math.KT) Algebraic variety 14C40 14C15 Codimension 16. Peace & justice Chern character Chow ring Algebraic cycle Steenrod operations Mathematics - K-Theory and Homology Torsion (algebra) Chow groups 010307 mathematical physics |
Zdroj: | Advances in Mathematics. 231:855-878 |
ISSN: | 0001-8708 |
DOI: | 10.1016/j.aim.2012.04.030 |
Popis: | We prove an integrality property of the Chern character with values in Chow groups. As a consequence we obtain, for a prime number p, a construction of the p-1 first homological Steenrod operations on Chow groups modulo p and p-primary torsion, over an arbitrary field. We provide applications to the study of correspondences between algebraic varieties. Comment: Correct some typos; add an appendix extending the results to schemes of finite type over a regular base |
Databáze: | OpenAIRE |
Externí odkaz: |