Realizable Lists on a Class of Nonnegative Matrices
Autor: | María Robbiano, Cristina B. Manzaneda, Enide Andrade |
---|---|
Rok vydání: | 2017 |
Předmět: |
Nonnegative matrix
0211 other engineering and technologies Circulant matrix 010103 numerical & computational mathematics 02 engineering and technology 01 natural sciences Square matrix Permutative matrix Combinatorics Mathematics - Spectral Theory Matrix (mathematics) Realizability Skew circulant matrix FOS: Mathematics Discrete Mathematics and Combinatorics Order (group theory) Mathematics - Combinatorics 0101 mathematics Spectral Theory (math.SP) Eigenvalues and eigenvectors Mathematics Guo perturbations Numerical Analysis Algebra and Number Theory Mathematics::Combinatorics 021107 urban & regional planning Inverse eigenvalue problem Geometry and Topology Combinatorics (math.CO) Row |
Zdroj: | Repositório Científico de Acesso Aberto de Portugal Repositório Científico de Acesso Aberto de Portugal (RCAAP) instacron:RCAAP |
DOI: | 10.48550/arxiv.1708.07397 |
Popis: | A square matrix of order n with n ≥ 2 is called permutative matrix when all its rows are permutations of the first row. In this paper recalling spectral results for partitioned into 2-by-2 symmetric blocks matrices sufficient conditions on a given complex list to be the list of the eigenvalues of a nonnegative permutative matrix are given. In particular, we study NIEP and PNIEP when some complex elements in the lists under consideration have non-zero imaginary part. Realizability regions for nonnegative permutative matrices are obtained. A Guo's realizability-preserving perturbations result is obtained. |
Databáze: | OpenAIRE |
Externí odkaz: |