Know When to Fold ’Em: Self-assembly of Shapes by Folding in Oritatami

Autor: Hadley Thomas, Shinnosuke Seki, Matthew J. Patitz, Jacob Hendricks, Erik D. Demaine, Meagan Olsen, Trent A. Rogers, Nicolas Schabanel
Přispěvatelé: Computer Science and Artificial Intelligence Laboratory [Cambridge] (CSAIL), Massachusetts Institute of Technology (MIT), University of Wisconsin Whitewater, Computer Science and Computer Engineering [Fayetteville] (CSCE), University of Arkansas [Fayetteville], Department of Computer Science and Engineering [Texas A&M University] (CSE), Texas A&M University [College Station], University of Central Arkansas (UCA), Modèles de calcul, Complexité, Combinatoire (MC2), Laboratoire de l'Informatique du Parallélisme (LIP), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS), Institut Rhône-Alpin des systèmes complexes (IXXI), École normale supérieure de Lyon (ENS de Lyon)-Université Lumière - Lyon 2 (UL2)-Université Jean Moulin - Lyon 3 (UJML), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), University of Electro-Communications [Tokyo] (UEC), Colorado School of Mines, École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL), École normale supérieure - Lyon (ENS Lyon)-Université Lumière - Lyon 2 (UL2)-Université Jean Moulin - Lyon 3 (UJML)
Jazyk: angličtina
Rok vydání: 2018
Předmět:
Zdroj: DNA 2018
DNA 2018, Oct 2018, Jinan, China. pp.19-36
arXiv
Lecture Notes in Computer Science ISBN: 9783030000295
DNA
Popis: An oritatami system (OS) is a theoretical model of self-assembly via co-transcriptional folding. It consists of a growing chain of beads which can form bonds with each other as they are transcribed. During the transcription process, the $\delta$ most recently produced beads dynamically fold so as to maximize the number of bonds formed, self-assemblying into a shape incrementally. The parameter $\delta$ is called the delay and is related to the transcription rate in nature. This article initiates the study of shape self-assembly using oritatami. A shape is a connected set of points in the triangular lattice. We first show that oritatami systems differ fundamentally from tile-assembly systems by exhibiting a family of infinite shapes that can be tile-assembled but cannot be folded by any OS. As it is NP-hard in general to determine whether there is an OS that folds into (self-assembles) a given finite shape, we explore the folding of upscaled versions of finite shapes. We show that any shape can be folded from a constant size seed, at any scale n >= 3, by an OS with delay 1. We also show that any shape can be folded at the smaller scale 2 by an OS with unbounded delay. This leads us to investigate the influence of delay and to prove that, for all {\delta} > 2, there are shapes that can be folded (at scale 1) with delay {\delta} but not with delay {\delta}'
Databáze: OpenAIRE