Lie algebras with complex structures having nilpotent eigenspaces

Autor: Luiz A. B. San Martin, Edson Carlos Licurgo Santos
Jazyk: angličtina
Rok vydání: 2011
Předmět:
Zdroj: Proyecciones (Antofagasta), Volume: 30, Issue: 2, Pages: 247-263, Published: 2011
Proyecciones (Antofagasta) v.30 n.2 2011
SciELO Chile
CONICYT Chile
instacron:CONICYT
Popis: Let (g,[·,·]) be a Lie algebra with an integrable complex structure J. The ±i eigenspaces of J are complex subalgebras of gC isomorphic to the algebra (g,[*]J) with bracket [X * Y]J = 1/2 ([X,Y] − [JX, JY]). We consider here the case where these subalgebras are nilpotent and prove that the original (g,[·,·]) Lie algebra must be solvable. We consider also the 6-dimensional case and determine explicitly the possible nilpotent Lie algebras (g,[*]J). Finally we produce several examples illustrating different situations, in particular we show that for each given s there exists g with complex structure J such that (g,[*]J) is s-step nilpotent. Similar examples of hypercomplex structures are also built.
Databáze: OpenAIRE