Auf dem Weg zum vertrauensvollen, unternehmensübergreifenden automatisierten Datenaustausch von Maschinen – Identifikation von schützenswertem Wissen im Zeitalter von Industrie 4.0

Autor: Joachim Starke, Moritz Wöhl, Andreas Frank, Daniela Waldmann, Sebastian Heger, Leon Adler, Henner Gimpel, Niclas Nüske
Přispěvatelé: Publica
Rok vydání: 2021
Předmět:
Zdroj: HMD Praxis der Wirtschaftsinformatik. 58:1521-1534
ISSN: 2198-2775
1436-3011
DOI: 10.1365/s40702-020-00704-w
Popis: ZusammenfassungDer unternehmensübergreifende Datenaustausch in der Welt von Industrie 4.0 birgt für Unternehmen immense Potenziale. So können Unternehmen wertvolles Wissen über den Einsatz ihrer Produkte gewinnen und ihren Kunden innovative Dienstleistungen anbieten. Umgekehrt können Kunden die Produkte zielgerichteter einsetzen, wenn sie beispielsweise Produktions- und Materialdetails kennen. Doch dabei möchte kein Unternehmen für sich geschäftskritisches Wissen an einen Partner im Wertschöpfungsnetzwerk freigeben. Zu groß ist das Risiko, Einblicke in beispielsweise Forschungs- und Entwicklungsergebnisse zu gewähren oder dem Kunden eine Kostenkalkulation aufgrund des genauen Prozessablaufes zu ermöglichen. Es ergibt sich die Frage, welche Daten bedenkenlos ausgetauscht werden können und in welchen Daten implizit wertvolles Wissen enthalten ist. Aus diesem Grund stellt der vorliegende Beitrag ein Vorgehensmodell zur Identifikation von schützenswertem Wissen vor dem Hintergrund des unternehmensübergreifenden automatisierten Datenaustauschs von Maschinen über Netzwerkplattformen vor. Mit Hilfe des Modells lassen sich Daten und Wissen analysieren und auf Basis der Schutzbedarfe und enthaltenen Potenziale einstufen. Ein möglichst umfangreicher unternehmensübergreifender Datenaustausch bei möglichst geringem Verlust von Know-how soll ermöglicht werden. Anschließend wird die Erprobung des Modells im Rahmen eines Anwendungsbeispiels vorgestellt und ein Ausblick gegeben.
Databáze: OpenAIRE