A protocol for dynamic model calibration
Autor: | Jan Hasenauer, Julio R. Banga, Fabian Fröhlich, Dilan Pathirana, Alejandro F. Villaverde |
---|---|
Přispěvatelé: | European Commission, Ministerio de Economía y Competitividad (España), Ministerio de Ciencia, Innovación y Universidades (España) |
Jazyk: | angličtina |
Rok vydání: | 2022 |
Předmět: |
Optimization
0209 industrial biotechnology Identification Computational complexity theory AcademicSubjects/SCI01060 Computer science Calibration (statistics) 02 engineering and technology computer.software_genre Models Biological Quantitative Biology - Quantitative Methods 03 medical and health sciences 020901 industrial engineering & automation Parameter estimation Identifiability Molecular Biology Quantitative Methods (q-bio.QM) 030304 developmental biology Protocol (science) 0303 health sciences Estimation theory 12 Matemáticas Experimental data 2404 Biomatemáticas Maxima and minima Identification (information) FOS: Biological sciences Calibration Dynamic Modelling Parameter Estimation Systems Biology Problem Solving Protocol Data mining Systems biology computer Information Systems Dynamic modelling |
Zdroj: | Briefings in Bioinformatics Investigo. Repositorio Institucional de la Universidade de Vigo Universidade de Vigo (UVigo) Digital.CSIC. Repositorio Institucional del CSIC instname Brief. Bioinform. 23:bbab387 (2022) |
Popis: | 19 pages, 6 figures, 2 tables.-- This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License Ordinary differential equation models are nowadays widely used for the mechanistic description of biological processes and their temporal evolution. These models typically have many unknown and nonmeasurable parameters, which have to be determined by fitting the model to experimental data. In order to perform this task, known as parameter estimation or model calibration, the modeller faces challenges such as poor parameter identifiability, lack of sufficiently informative experimental data and the existence of local minima in the objective function landscape. These issues tend to worsen with larger model sizes, increasing the computational complexity and the number of unknown parameters. An incorrectly calibrated model is problematic because it may result in inaccurate predictions and misleading conclusions. For nonexpert users, there are a large number of potential pitfalls. Here, we provide a protocol that guides the user through all the steps involved in the calibration of dynamic models. We illustrate the methodology with two models and provide all the code required to reproduce the results and perform the same analysis on new models. Our protocol provides practitioners and researchers in biological modelling with a one-stop guide that is at the same time compact and sufficiently comprehensive to cover all aspects of the problem European Union’s Horizon 2020 Research and Innovation Programme (grant no. 686282) (‘CANPATHPRO’); Spanish MINECO/FEDER Project SYNBIOCONTROL (DPI2017-82896-C2-2-R to J.R.B.); Ramón y Cajal Fellowship (RYC-2019-027537-I to A.F.V.) from the Ministerio de Ciencia e innovación, Spain; Consellería de Cultura, Educación e Ordenación Universitaria, Xunta de Galicia (ED431F 2021/003 to A.F.V.); Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy (EXC 2151 - 390873048 to J.H.), (EXC-2047/1 - 390685813 to D.P.); German Federal Ministry of Economic Affairs and Energy (grant no. 16KN074236 to D.P.). Ministerio de Ciencia e Innovación, Spain (grant PID2020-117271RB-C22, ‘BIODYNAMICS’, to J.R.B.; Funding for open access charge: Universidade de Vigo/CISUG) |
Databáze: | OpenAIRE |
Externí odkaz: |