Ba0.6Sr0.4TiO3Thin Films Deposited by Spray Coating for High Capacitance Density Capacitors

Autor: Emmanuel Tetsi, Roxan Lemire, Isabelle Bord Majek, Dominique Drouin, Laurent Bechou, Jean Audet, Gilles Philippot, Cyril Aymonier
Přispěvatelé: Université de Sherbrooke (UdeS), Laboratoire Nanotechnologies Nanosystèmes (LN2 ), Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université de Sherbrooke (UdeS)-École supérieure de Chimie Physique Electronique de Lyon (CPE)-Centre National de la Recherche Scientifique (CNRS), Institut de Chimie de la Matière Condensée de Bordeaux (ICMCB), Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de l'intégration, du matériau au système (IMS), Université Sciences et Technologies - Bordeaux 1-Institut Polytechnique de Bordeaux-Centre National de la Recherche Scientifique (CNRS), IBM Bromont, Institut Interdisciplinaire d'Innovation Technologique [Sherbrooke] (3IT), the NSERC/IBM chair in Smarter Microelectronic Packaging for Performance Scaling.
Rok vydání: 2018
Předmět:
Zdroj: physica status solidi (a)
physica status solidi (a), Wiley, 2018, 215 (23), 1800478 (11 p.). ⟨10.1002/pssa.201800478⟩
ISSN: 1862-6300
0031-8965
1862-6319
Popis: International audience; Metal‐insulator‐metal (MIM) capacitors with Ba0.6Sr0.4TiO3 (BST) thin films as insulating layers are fabricated using a novel, fast, and low‐cost method. On one hand, the process lies in the swift, continuous, and scalable synthesis of BST nanoparticles using the supercritical fluid technology and, on the other hand, the nonpyrolytic spray coating of thin films using colloidal nanocrystals as ink. The authors focus on the deposition process of thin and uniform layer. A dispersed colloidal suspension based on BST nanoparticles is deposited on a hot copper substrate. A 200 nm thick dielectric film is successfully obtained. Electrical characterizations of Cu/BST/Al MIM structure demonstrate a state‐of‐the‐art capacitance density almost reaching 1 µF cm−2 within an operating voltage range of ±1 V. Moreover, an annealing process of the dielectric layer and the final MIM capacitor at 90 °C during 15 h brings a significant decrease of the leakage current by three decades from mA cm−2 to µA cm−2.
Databáze: OpenAIRE