Pentacene Crystal Growth on Silica and Layer-Dependent Step-Edge Barrier from Atomistic Simulations

Autor: Claudio Zannoni, Luca Muccioli, Gabriele D'Avino, Otello Maria Roscioni
Přispěvatelé: Dipartimento di Chimica Industriale ‘‘Toso Montanari’’, Alma Mater Studiorum Università di Bologna [Bologna] (UNIBO), Théorie de la Matière Condensée (TMC ), Institut Néel (NEEL), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Laboratoire de Chimie des Polymères Organiques (LCPO), Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC), Department of Industrial Chemistry, Roscioni, Otello Maria, D'avino, Gabriele, Muccioli, Luca, Zannoni, Claudio
Jazyk: angličtina
Rok vydání: 2018
Předmět:
Zdroj: Journal of Physical Chemistry Letters
Journal of Physical Chemistry Letters, American Chemical Society, 2018, 9 (23), pp.6900-6906. ⟨10.1021/acs.jpclett.8b03063⟩
ISSN: 1948-7185
Popis: Understanding and controlling the growth of organic crystals deposited from the vapor phase is important for fundamental materials science and necessary for applications in pharmaceutical and organic electronics industries. Here, this process is studied for the paradigmatic case of pentacene on silica by means of a specifically tailored computational approach inspired by the experimental vapor deposition process. This scheme is able to reproduce the early stages of the thin-film formation, characterized by a quasi layer-by-layer growth, thus showcasing its potential as a tool complementary to experimental techniques for investigating organic crystals. Crystalline islands of standing molecules are formed at a critical coverage, as a result of a collective reorientation of disordered aggregates of flat-lying molecules. The growth then proceeds by sequential attachment of molecules at the cluster and then terrace edges. Free-energy calculations allowed us to characterize the step-edge barrier for descending the terraces, a fundamental parameter for growth models for which only indirect experimental measurements are available. The barrier is found to be layer-dependent (approximately 1 kcal/mol for the first monolayer on silica, 2 kcal/mol for the second monolayer) and to extend over a distance comparable with the molecular length.
Databáze: OpenAIRE