Taming nuclear complexity with a committee of multilayer neural networks

Autor: Jean-Paul Ebran, David Regnier, R. D. Lasseri, Antonin Penon
Přispěvatelé: Département de Physique Nucléaire (ex SPhN) (DPHN), Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Centre de Mathématiques et de Leurs Applications (CMLA), École normale supérieure - Cachan (ENS Cachan)-Centre National de la Recherche Scientifique (CNRS), Direction des Applications Militaires (DAM), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)
Jazyk: angličtina
Rok vydání: 2019
Předmět:
Zdroj: Phys.Rev.Lett.
Phys.Rev.Lett., 2020, 124 (16), pp.162502. ⟨10.1103/PhysRevLett.124.162502⟩
Physical Review Letters
Physical Review Letters, American Physical Society, 2020, 124 (16), pp.162502. ⟨10.1103/PhysRevLett.124.162502⟩
Physical Review Letters, 2020, 124 (16), pp.162502. ⟨10.1103/PhysRevLett.124.162502⟩
ISSN: 0031-9007
1079-7114
DOI: 10.1103/PhysRevLett.124.162502⟩
Popis: International audience; We demonstrate that a committee of deep neural networks is capable of predicting the ground-state and excited energies of more than 1800 atomic nuclei with an accuracy akin to the one achieved by state-of-the-art nuclear energy density functionals (EDFs) and with significantly less computational cost. An active learning strategy is proposed to train this algorithm with a minimal set of 210 nuclei. This approach enables future fast studies of the influence of EDF parametrizations on structure properties over the whole nuclear chart and suggests that for the first time a machine learning framework successfully encoded several correlated aspects of nuclear deformation.
Databáze: OpenAIRE