On the asymptotic representation of the Euler gamma function by Ramanujan

Autor: Ekatherina A. Karatsuba
Rok vydání: 2001
Předmět:
Zdroj: Journal of Computational and Applied Mathematics. 135(2):225-240
ISSN: 0377-0427
DOI: 10.1016/s0377-0427(00)00586-0
Popis: The problem of approximation to the Euler gamma function on the basis of some Ramanujan's formulas is considered. The function h(x)=(g(x))6−(8x3+4x2+x), where g(x)=(e/x) x Γ(1+x)/ π , is studied. It is proved that on the interval (1,∞) the function h(x) is increasing monotonically from h(1)=0.0111976… to h(∞)=1/30=0.0333… .
Databáze: OpenAIRE