Evaluating the performance of look-ahead policies for upstream serial processor with downstream batch processor serving incompatible job families and finite buffer sizes

Autor: Appa Iyer Sivakumar, John Benedict C. Tajan, Stanley B. Gershwin
Přispěvatelé: School of Mechanical and Aerospace Engineering, Singapore-MIT Alliance Programme
Rok vydání: 2012
Předmět:
Zdroj: International Journal of Operational Research. 15:260
ISSN: 1745-7653
1745-7645
DOI: 10.1504/ijor.2012.049482
Popis: Batch processors can concurrently process more than one job. In wafer fabrication, the processing time of a batch is independent of batch size, and only jobs from the same job family can be batched together. We consider a two-stage subsystem of a wafer fabrication facility (wafer fab), comprised of the diffusion furnace (a batch processor) and its upstream serial processor, with random job arrivals. We hypothesise that allowing the serial processor to anticipate the job family preference of the batch processor will reduce the overall cycle time of jobs passing through this system. To evaluate this hypothesis, we model the performance of the two-stage system under different system parameters and processor control policies as discrete state continuous time Markov chains. We characterise the system performance and show that the concept of constraining the production of the upstream processor according to the anticipated needs of the batch processor can reduce the mean cycle time of jobs being processed. We also perform simulation experiments to show that a simple heuristic based on this insight can translate to substantial cycle time reductions for systems with assumptions closer to those found in wafer fabs.
Databáze: OpenAIRE