Genome segment 4 of Antheraea mylitta cytoplasmic polyhedrosis virus encodes RNA triphosphatase and methyltransferases

Autor: Anirban Kundu, Poulomi Biswas, Ananta K. Ghosh
Rok vydání: 2014
Předmět:
Zdroj: The Journal of general virology. 96(Pt 1)
ISSN: 1465-2099
Popis: Cloning and sequencing of Antheraea mylitta cytoplasmic polyhedrosis virus (AmCPV) genome segment S4 showed that it consists of 3410 nt with a single ORF of 1110 aa which could encode a protein of ~127 kDa (p127). Bioinformatics analysis showed the presence of a 5' RNA triphosphatase (RTPase) domain (LRDR), a S-adenosyl-l-methionine (SAM)-binding (GxGxG) motif and the KDKE tetrad of 2'-O-methyltransferase (MTase), which suggested that S4 may encode RTPase and MTase. The ORF of S4 was expressed in Escherichia coli as a His-tagged fusion protein and purified by nickel-nitrilotriacetic acid affinity chromatography. Biochemical analysis of recombinant p127 showed its RTPase as well as SAM-dependent guanine N(7)-and ribose 2'-O-MTase activities. A MTase assay using in vitro transcribed AmCPV S2 RNA having a 5' G*pppG end showed that guanine N(7) methylation occurred prior to the ribose 2'-O methylation to yield a m(7)GpppG/m(7)GpppGm RNA cap. Mutagenesis of the SAM-binding (GxGxG) motif (G831A) completely abolished N(7)- and 2'-O-MTase activities, indicating the importance of these residues for capping. From the kinetic analysis, the Km values of N(7)-MTase for SAM and RNA were calculated as 4.41 and 0.39 µM, respectively. These results suggested that AmCPV S4-encoded p127 catalyses RTPase and two cap methylation reactions for capping the 5' end of viral RNA.
Databáze: OpenAIRE