Limit-point/limit-circle classification for Hain-Lust type equations
Autor: | Henk de Snoo, Seppo Hassi, Manfred Möller |
---|---|
Přispěvatelé: | Dynamical Systems, Geometry & Mathematical Physics |
Jazyk: | angličtina |
Rok vydání: | 2018 |
Předmět: |
SELF-ADJOINTNESS
mixed-order differential system General Mathematics Sturm–Liouville theory 01 natural sciences CANONICAL SYSTEMS HAMILTONIAN-SYSTEMS symbols.namesake Weyl's limit-point ORDINARY DIFFERENTIAL-OPERATORS Distributed parameter system Simultaneous equations 0103 physical sciences Hain-Lust equation TITCHMARSH-WEYL COEFFICIENTS 0101 mathematics limit-circle classification Mathematics S-HERMITIAN SYSTEMS Independent equation ta111 010102 general mathematics Mathematical analysis EIGENVALUE PARAMETER MIXED ORDER Mathematics::Spectral Theory Sturm-Liouville problem Euler equations Nonlinear system ESSENTIAL SPECTRUM STURM-LIOUVILLE PROBLEMS symbols 010307 mathematical physics Differential algebraic equation Numerical partial differential equations |
Zdroj: | Mathematische Nachrichten, 291(4), 652-668. WILEY-V C H VERLAG GMBH |
ISSN: | 0025-584X |
DOI: | 10.1002/mana.201600254 |
Popis: | Hain-Lust equations appear in magnetohydrodynamics. They are Sturm-Liouville equations with coefficients depending rationally on the eigenvalue parameter. In this paper such equations are connected with a 2 x 2 system of differential equations, where the dependence on the eigenvalue parameter is linear. By means of this connection Weyl's fundamental limit-point/limit-circle classification is extended to a general setting of Hain-Lust-type equations. |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |