Multiciliated cell basal bodies align in stereotypical patterns coordinated by the apical cytoskeleton

Autor: Hatsuho Kanoh, Kazuhiro Tateishi, Daisuke Taniguchi, Sachiko Tsukita, Elisa Herawati, Shuji Ishihara
Jazyk: angličtina
Rok vydání: 2016
Předmět:
Zdroj: The Journal of Cell Biology
ISSN: 1540-8140
0021-9525
Popis: Herawati et al. developed a long-term and high-resolution live imaging system for cultured mouse tracheal multiciliated cells. Using both experimental and theoretical studies, they reveal the developmental principle of ciliary basal body alignment directed by apical cytoskeletons.
Multiciliated cells (MCCs) promote fluid flow through coordinated ciliary beating, which requires properly organized basal bodies (BBs). Airway MCCs have large numbers of BBs, which are uniformly oriented and, as we show here, align linearly. The mechanism for BB alignment is unexplored. To study this mechanism, we developed a long-term and high-resolution live-imaging system and used it to observe green fluorescent protein–centrin2–labeled BBs in cultured mouse tracheal MCCs. During MCC differentiation, the BB array adopted four stereotypical patterns, from a clustering “floret” pattern to the linear “alignment.” This alignment process was correlated with BB orientations, revealed by double immunostaining for BBs and their asymmetrically associated basal feet (BF). The BB alignment was disrupted by disturbing apical microtubules with nocodazole and by a BF-depleting Odf2 mutation. We constructed a theoretical model, which indicated that the apical cytoskeleton, acting like a viscoelastic fluid, provides a self-organizing mechanism in tracheal MCCs to align BBs linearly for mucociliary transport.
Databáze: OpenAIRE