A self-supervised learning strategy for postoperative brain cavity segmentation simulating resections
Autor: | Michele Rizzi, Irène Ollivier, Sebastien Ourselin, Vincent Navarro, Fernando Pérez-García, Valerio Frazzini, Reuben Dorent, Caroline Essert, Francesco Cardinale, Rachel Sparks, John S. Duncan, Tom Vercauteren |
---|---|
Přispěvatelé: | Laboratoire des sciences de l'ingénieur, de l'informatique et de l'imagerie (ICube), Institut National des Sciences Appliquées - Strasbourg (INSA Strasbourg), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)-École Nationale du Génie de l'Eau et de l'Environnement de Strasbourg (ENGEES)-Réseau nanophotonique et optique, Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Matériaux et nanosciences d'Alsace (FMNGE), Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), École Nationale du Génie de l'Eau et de l'Environnement de Strasbourg (ENGEES)-Université de Strasbourg (UNISTRA)-Institut National des Sciences Appliquées - Strasbourg (INSA Strasbourg), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Institut National de Recherche en Informatique et en Automatique (Inria)-Les Hôpitaux Universitaires de Strasbourg (HUS)-Centre National de la Recherche Scientifique (CNRS)-Matériaux et Nanosciences Grand-Est (MNGE), Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Réseau nanophotonique et optique, Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS) |
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: |
FOS: Computer and information sciences
Technology Source code Computer science Computer Vision and Pattern Recognition (cs.CV) Computer Science - Computer Vision and Pattern Recognition Convolutional neural network 030218 nuclear medicine & medical imaging 0302 clinical medicine Engineering Resective neurosurgery Image Processing Computer-Assisted Segmentation Cavity segmentation Lesion simulation EPILEPSY media_common Brain cavity Image and Video Processing (eess.IV) Radiology Nuclear Medicine & Medical Imaging Brain General Medicine Computer Graphics and Computer-Aided Design Magnetic Resonance Imaging 3. Good health Computer Science Applications [INFO.INFO-TI]Computer Science [cs]/Image Processing [eess.IV] Original Article Computer Vision and Pattern Recognition Supervised Machine Learning Life Sciences & Biomedicine Self-supervised learning media_common.quotation_subject IMAGES Biomedical Engineering Health Informatics Neuroimaging 03 medical and health sciences FOS: Electrical engineering electronic engineering information engineering Leverage (statistics) Humans Radiology Nuclear Medicine and imaging Engineering Biomedical Self supervised learning Science & Technology LESIONS business.industry Pattern recognition Image segmentation Electrical Engineering and Systems Science - Image and Video Processing Informatique [cs]/Traitement des images [eess.IV] Surgery Artificial intelligence Neural Networks Computer business 030217 neurology & neurosurgery |
Zdroj: | International Journal of Computer Assisted Radiology and Surgery International Journal of Computer Assisted Radiology and Surgery, Springer Verlag, 2021, ⟨10.1007/s11548-021-02420-2⟩ International Journal of Computer Assisted Radiology and Surgery, 2021, ⟨10.1007/s11548-021-02420-2⟩ |
ISSN: | 1861-6410 1861-6429 |
DOI: | 10.1007/s11548-021-02420-2⟩ |
Popis: | Accurate segmentation of brain resection cavities (RCs) aids in postoperative analysis and determining follow-up treatment. Convolutional neural networks (CNNs) are the state-of-the-art image segmentation technique, but require large annotated datasets for training. Annotation of 3D medical images is time-consuming, requires highly-trained raters, and may suffer from high inter-rater variability. Self-supervised learning strategies can leverage unlabeled data for training. We developed an algorithm to simulate resections from preoperative magnetic resonance images (MRIs). We performed self-supervised training of a 3D CNN for RC segmentation using our simulation method. We curated EPISURG, a dataset comprising 430 postoperative and 268 preoperative MRIs from 430 refractory epilepsy patients who underwent resective neurosurgery. We fine-tuned our model on three small annotated datasets from different institutions and on the annotated images in EPISURG, comprising 20, 33, 19 and 133 subjects. The model trained on data with simulated resections obtained median (interquartile range) Dice score coefficients (DSCs) of 81.7 (16.4), 82.4 (36.4), 74.9 (24.2) and 80.5 (18.7) for each of the four datasets. After fine-tuning, DSCs were 89.2 (13.3), 84.1 (19.8), 80.2 (20.1) and 85.2 (10.8). For comparison, inter-rater agreement between human annotators from our previous study was 84.0 (9.9). We present a self-supervised learning strategy for 3D CNNs using simulated RCs to accurately segment real RCs on postoperative MRI. Our method generalizes well to data from different institutions, pathologies and modalities. Source code, segmentation models and the EPISURG dataset are available at https://github.com/fepegar/ressegijcars . To be published in the International Journal of Computer Assisted Radiology and Surgery (IJCARS) - Special issue MICCAI 2020 |
Databáze: | OpenAIRE |
Externí odkaz: |