Pseudo beam’s-eye–view as applied to beam orientation selection in intensity-modulated radiation therapy
Autor: | Lei Xing, Andrei Pugachev |
---|---|
Rok vydání: | 2001 |
Předmět: |
Cancer Research
medicine.medical_specialty Spinal Neoplasms Radiation Radiotherapy business.industry Orientation (computer vision) medicine.medical_treatment Score Nasopharyngeal Neoplasms Radiotherapy Dosage Radiation therapy Optics Oncology Beam's eye view medicine Humans Radiology Nuclear Medicine and imaging Medical physics business Radiation treatment planning Intensity modulation Selection (genetic algorithm) Beam (structure) |
Zdroj: | International Journal of Radiation Oncology*Biology*Physics. 51:1361-1370 |
ISSN: | 0360-3016 |
DOI: | 10.1016/s0360-3016(01)01736-9 |
Popis: | Purpose: To introduce the concept of pseudo beam’s-eye–view (pBEV), to establish a framework for computer-assisted beam orientation selection in intensity-modulated radiation therapy (IMRT), and to evaluate the utility of the proposed technique. Methods and Materials: To facilitate the selection of beam orientations for IMRT treatment planning, a scoring of beam direction was introduced. The score function was based on the maximum target dose deliverable by the beam without exceeding the tolerance doses of the critical structures. For the score function calculation, the beam portal at given gantry and couch angles was divided into a grid of beamlets. Each beamlet crossing the target was assigned the maximum intensity that could be used without exceeding the dose tolerances of the organs at risk (OARs) and normal tissue. Thereafter, a score was assigned to the beam according to the target dose delivered. The beams for the treatment were selected among those with the highest scores. In a sense, this technique is similar to the beam’s-eye–view approach used in conventional radiation therapy, except that the evaluation by a human is replaced by a score function, and beam modulation is taken into account. Results: The pBEV technique was tested on two clinical cases: a paraspinal treatment and a nasopharyngeal cancer with both coplanar and noncoplanar beam configurations. The plans generated under the guidance of pBEV for the paraspinal treatment offered superior target dose uniformity and reduced OAR doses. For the nasopharyngeal cancer case, it was also found that the pBEV-selected coplanar and noncoplanar beams significantly improved the target coverage without compromising the sparing of the OARs. Conclusions: The pBEV technique developed in this work provides a comprehensive tool for beam orientation selection in IMRT. It is especially valuable for complicated cases, where the target is surrounded by several sensitive structures and where it is difficult to select a set of good beam orientations. The pBEV technique has considerable potential for simplifying the IMRT treatment planning process and for maximizing the technical capacity of IMRT. |
Databáze: | OpenAIRE |
Externí odkaz: |