A Top-Down and Bottom-Up Visual Attention Model for Humanoid Object Approaching and Obstacle Avoidance

Autor: Hendry Ferreira Chame, Christine Chevallereau
Přispěvatelé: Robotique, Institut de Recherche en Communications et en Cybernétique de Nantes (IRCCyN), Mines Nantes (Mines Nantes)-École Centrale de Nantes (ECN)-Ecole Polytechnique de l'Université de Nantes (EPUN), Université de Nantes (UN)-Université de Nantes (UN)-PRES Université Nantes Angers Le Mans (UNAM)-Centre National de la Recherche Scientifique (CNRS)-Mines Nantes (Mines Nantes)-École Centrale de Nantes (ECN)-Ecole Polytechnique de l'Université de Nantes (EPUN), Université de Nantes (UN)-Université de Nantes (UN)-PRES Université Nantes Angers Le Mans (UNAM)-Centre National de la Recherche Scientifique (CNRS)
Rok vydání: 2016
Předmět:
Zdroj: 2016 XIII Latin American Robotics Symposium and IV Brazilian Robotics Symposium (LARS/SBR)
2016 XIII Latin American Robotics Symposium and IV Brazilian Robotics Symposium (LARS/SBR), Oct 2016, Recife, Brazil. ⟨10.1109/LARS-SBR.2016.12⟩
DOI: 10.1109/lars-sbr.2016.12
Popis: International audience; Most of the research on humanoid walk tasks has considered a global representation of the scene that frequently relies on external sensors. This is detrimental to the autonomy and the reactivity of the agent under unknown or changing scenarios. Ego-centric localization has been less explored, and the works considering on-board acquisitions have mostly dealt with tasks under controlled scenarios where the path to the object is cleared from obstacles. In this work a behavior-based control scheme is proposed, so the robot Nao can approach and position in relation to a given face of an object, while avoiding obstacles. For this, the solution relies on top-down (color-based) and bottom-up (optic-flow-based) visual features, and proprioceptive information registered on-board. The model is decentralized and exploits the emergent aspect of behavior from the independent contribution of a walk and a look-at task. An embodied visual encoding approach is proposed to support the arbitration between competing behavioral modes.
Databáze: OpenAIRE