Cell competition corrects noisy Wnt morphogen gradients to achieve robust patterning in the zebrafish embryo

Autor: Jumpei Nogami, Yasuyuki Ohkawa, Tohru Ishitani, Takamasa Masuda, Ryutaro Akiyoshi, Hironobu Furuie, Shizuka Ishitani, Shohei Ogamino, Yuki Akieda, Nobuyuki Shimizu
Jazyk: angličtina
Rok vydání: 2019
Předmět:
Zdroj: Nature Communications, Vol 10, Iss 1, Pp 1-17 (2019)
Nature Communications
ISSN: 2041-1723
Popis: Morphogen signalling forms an activity gradient and instructs cell identities in a signalling strength-dependent manner to pattern developing tissues. However, developing tissues also undergo dynamic morphogenesis, which may produce cells with unfit morphogen signalling and consequent noisy morphogen gradients. Here we show that a cell competition-related system corrects such noisy morphogen gradients. Zebrafish imaging analyses of the Wnt/β-catenin signalling gradient, which acts as a morphogen to establish embryonic anterior-posterior patterning, identify that unfit cells with abnormal Wnt/β-catenin activity spontaneously appear and produce noise in the gradient. Communication between unfit and neighbouring fit cells via cadherin proteins stimulates apoptosis of the unfit cells by activating Smad signalling and reactive oxygen species production. This unfit cell elimination is required for proper Wnt/β-catenin gradient formation and consequent anterior-posterior patterning. Because this gradient controls patterning not only in the embryo but also in adult tissues, this system may support tissue robustness and disease prevention.
Gradients of morphogens such as Wnt provide instructive cues for cell identities during development. Here, the authors report that in the developing zebrafish embryo, cell competition and elimination of unfit cells are required for proper Wnt gradient formation.
Databáze: OpenAIRE