Computer simulation of blood flow in the human arm

Autor: Donald F. Young, Thomas R. Rogge, Salil Balar
Rok vydání: 1989
Předmět:
Zdroj: Journal of Biomechanics. 22:691-697
ISSN: 0021-9290
DOI: 10.1016/0021-9290(89)90019-5
Popis: This paper considers a finite element method to characterize blood flow in the human arm arteries. A set of different pressure waveforms, which represent normal and diseased heart pulses, is used for the proximal boundary conditions, and a modified Windkessel model is used for the distal arterial boundary conditions. A comparison of the distal pressure and flow waveforms, for each different proximal pressure, is made to determine whether such waveforms are significantly altered from normal waveforms. The results show that the distal pressure and/or flow waveforms in certain cases are sufficiently different to be possibly used as a diagnostic indicator of an abnormal heart condition. Also considered is the effect of stenosis, change of compliance, and dilatation of the distal beds on the pressure and flow waveforms. A stenosis which has an area reduction of greater than approximately 75% is found to significantly alter both the distal pressure and flow waveforms. Changes in arterial compliance, however, do not strongly influence the waveforms. Dilatation of distal vascular beds is simulated by reducing the lumped resistance of these beds, and this reduction increases mean flow and decreases mean distal pressure, but has little effect on the basic shape of either the pressure or flow waveform.
Databáze: OpenAIRE