Impact of Molecular Crowding on Translational Mobility and Conformational Properties of Biological Macromolecules

Autor: Julia Walter, Alyazan Albarghash, Daryan Kempe, Farzaneh Vaghefikia, Julia Otten, Simone Wiegand, Joerg Fitter, Henning Höfig, Niklas O. Junker, Alexandros Katranidis, Martina Pohl
Rok vydání: 2019
Předmět:
Zdroj: The journal of physical chemistry / B B, Condensed matter, materials, surfaces, interfaces & biophysical 123(21), 4477-4486 (2019). doi:10.1021/acs.jpcb.9b01239
ISSN: 1520-5207
Popis: Effects of molecular crowding on structural and dynamical properties of biological macromolecules do depend on the concentration of crowding agents but also on the molecular mass and the structural compactness of the crowder molecules. By employing fluorescence correlation spectroscopy (FCS), we investigated the translational mobility of several biological macromolecules ranging from 17 kDa to 2.7 MDa. Polyethylene glycol and Ficoll polymers of different molecular masses were used in buffer solutions to mimic a crowded environment. The reduction in translational mobility of the biological tracer molecules was analyzed as a function of crowder volume fractions and was generally more pronounced in PEG as compared to Ficoll solutions. For several crowding conditions, we observed a molecular sieving effect, in which the diffusion coefficient of larger tracer molecules is reduced to a larger extent than predicted by the Stokes–Einstein relation. By employing a FRET-based biosensor, we also showed that a multiprotein complex is significantly compacted in the presence of macromolecular crowders. Importantly, with respect to sensor in vivo applications, ligand concentration determining sensors would need a crowding specific calibration in order to deliver correct cytosolic ligand concentration.
Databáze: OpenAIRE