Classification of SD-OCT Volumes Using Local Binary Patterns: Experimental Validation for DME Detection
Autor: | Désiré Sidibé, Ecosse L. Lamoureux, Fabrice Meriaudeau, Guillaume Lemaitre, Carol Y. Cheung, Joan Massich, Dan Milea, Mojdeh Rastgoo, Tien Yin Wong |
---|---|
Přispěvatelé: | Laboratoire Electronique, Informatique et Image ( Le2i ), Université de Bourgogne ( UB ) -AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement-Centre National de la Recherche Scientifique ( CNRS ), Department of Ophthalmology and Visual Science, The Chinese University of Hong Kong [Hong Kong], Singapore Eye Research Institute, Singapore National Eye Centre, Centre for Intelligent Signal and Imaging Research (Universiti Teknologi Petronas) ( CISIR ), Singapore French Institute (IFS), Singapore Eye Research Institute (SERI), Regional Council of Burgundy 2015-9201AAO050S02760, Laboratoire Electronique, Informatique et Image [UMR6306] (Le2i), Université de Bourgogne (UB)-École Nationale Supérieure d'Arts et Métiers (ENSAM), Arts et Métiers Sciences et Technologies, HESAM Université (HESAM)-HESAM Université (HESAM)-Arts et Métiers Sciences et Technologies, HESAM Université (HESAM)-HESAM Université (HESAM)-AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement-Centre National de la Recherche Scientifique (CNRS), Centre for Intelligent Signal and Imaging Research [Petronas] (CISIR), Universiti Teknologi PETRONAS (UTP), Université de Bourgogne (UB)-Centre National de la Recherche Scientifique (CNRS)-École Nationale Supérieure d'Arts et Métiers (ENSAM), HESAM Université (HESAM)-HESAM Université (HESAM)-AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement, Lemaitre, Guillaume |
Jazyk: | angličtina |
Rok vydání: | 2016 |
Předmět: |
genetic structures
[INFO.INFO-IM] Computer Science [cs]/Medical Imaging [ SPI.SIGNAL ] Engineering Sciences [physics]/Signal and Image processing [ INFO.INFO-CV ] Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV] 0302 clinical medicine [INFO.INFO-CV] Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV] Segmentation lcsh:Ophthalmology Speckle LBP Diagnosis Prevalence Preprocessor Computer vision medicine.diagnostic_test [ INFO.INFO-IM ] Computer Science [cs]/Medical Imaging Experimental validation Diabetic Macular Edema [ SDV.MHEP.OS ] Life Sciences [q-bio]/Human health and pathology/Sensory Organs Optical Coherence Tomography [SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processing Research Article Article Subject Local binary patterns 03 medical and health sciences Speckle pattern Optical coherence tomography [ SDV.MHEP ] Life Sciences [q-bio]/Human health and pathology Medical imaging medicine DME [INFO.INFO-IM]Computer Science [cs]/Medical Imaging Coherence (signal processing) Texture [SDV.MHEP.OS]Life Sciences [q-bio]/Human health and pathology/Sensory Organs Retinopathy [SPI.SIGNAL] Engineering Sciences [physics]/Signal and Image processing business.industry [INFO.INFO-CV]Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV] Pattern recognition eye diseases Ophthalmology OCT lcsh:RE1-994 030221 ophthalmology & optometry Images Artificial intelligence business 030217 neurology & neurosurgery [SDV.MHEP]Life Sciences [q-bio]/Human health and pathology |
Zdroj: | American Journal of Ophthalmology American Journal of Ophthalmology, Elsevier Masson, 2016, 2016, pp.1-14. 〈https://www.hindawi.com/journals/joph/2016/3298606/〉. 〈10.1155/2016/3298606〉 American Journal of Ophthalmology, Elsevier Masson, 2016, 2016, pp.1-14. ⟨10.1155/2016/3298606⟩ Journal of Ophthalmology Journal of Ophthalmology, Hindawi Publishing Corporation, 2016, 2016 Journal of Ophthalmology, Vol 2016 (2016) |
ISSN: | 0002-9394 2090-004X 2090-0058 |
DOI: | 10.1155/2016/3298606〉 |
Popis: | International audience; This paper addresses the problem of automatic classification of Spectral Domain OCT (SD-OCT) data for automatic identification of patients with Diabetic Macular Edema (DME) versus normal subjects. Optical Coherence Tomography (OCT) has been a valuable diagnostic tool for DME, which is among the most common causes of irreversible vision loss in individuals with diabetes. Here, a classification framework with five distinctive steps is proposed and we present an extensive study of each step. Our method considers combination of various pre-processings in conjunction with Local Binary Patterns (LBP) features and different mapping strategies. Using linear and non-linear classifiers, we tested the developed framework on a balanced cohort of 32 patients. Experimental results show that the proposed method outperforms the previous studies by achieving a Sensitivity (SE) and Specificity (SP) of 81.2% and 93.7%, respectively. Our study concludes that the 3D features and high-level representation of 2D features using patches achieve the best results. However, the effects of pre-processing is inconsistent with respect to different classifiers and feature configurations. |
Databáze: | OpenAIRE |
Externí odkaz: |