Transcendence of numbers related with Cahen’s constant
Autor: | Takeshi Kurosawa, Iekata Shiokawa, Daniel Duverney |
---|---|
Rok vydání: | 2019 |
Předmět: |
Sequence
11J81 Algebra and Number Theory Transcendence (philosophy) Sylvester's sequence Mathematics::Number Theory Rationality Quantitative Biology::Other Combinatorics Mahler's method Mathematics::K-Theory and Homology Discrete Mathematics and Combinatorics Cahen's constant Constant (mathematics) transcendence Mathematics |
Zdroj: | Mosc. J. Comb. Number Theory 8, no. 1 (2019), 57-69 |
ISSN: | 2220-5438 |
DOI: | 10.2140/moscow.2019.8.57 |
Popis: | Cahen’s constant is defined by the alternating sum of reciprocals of terms of Sylvester’s sequence minus 1. Davison and Shallit proved the transcendence of the constant and Becker improved it. In this paper, we study rationality of functions satisfying certain functional equations and generalize the result of Becker by a variant of Mahler’s method. |
Databáze: | OpenAIRE |
Externí odkaz: |