The convergence of discrete Fourier-Jacobi series
Autor: | Alberto Arenas, Óscar Ciaurri, Edgar Labarga |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2019 |
Předmět: |
Sequence
Series (mathematics) Applied Mathematics General Mathematics symbols.namesake Operator (computer programming) Mathematics - Classical Analysis and ODEs 42C10 (Primary) Convergence (routing) symbols Classical Analysis and ODEs (math.CA) FOS: Mathematics Applied mathematics Jacobi polynomials Mathematics |
Zdroj: | RIUR. Repositorio Institucional de la Universidad de La Rioja instname |
Popis: | The discrete counterpart of the problem related to the convergence of the Fourier-Jacobi series is studied. To this end, given a sequence, we construct the analogue of the partial sum operator related to Jacobi polynomials and characterize its convergence in the $\ell^p(\mathbb{N})$-norm. 10 pages, corrected typos, added comments |
Databáze: | OpenAIRE |
Externí odkaz: |