Cloud-scale model intercomparison of chemical constituent transport in deep convection
Autor: | Barth, M. C., W Kim, S., Chen Wang, Pickering, K. E., Ott, L. E., Stenchikov, G., Maud LERICHE, Cautenet, S., P Pinty, J., Christelle Barthe, Mari, C., Helsdon, J. H., Farley, R. D., Fridlind, A. M., Ackerman, A. S., Spiridonov, V., Telenta, B. |
---|---|
Přispěvatelé: | National Center for Atmospheric Research [Boulder] (NCAR), Massachusetts Institute of Technology (MIT), University of Maryland [College Park], University of Maryland System, Rutgers, The State University of New Jersey [New Brunswick] (RU), Rutgers University System (Rutgers), Université Blaise Pascal - Clermont-Ferrand 2 (UBP), Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées, Équipe Cyclones, Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées, South Dakota School of Mines and Technology, South Dakota School of Mines and Technology (SDSM&T), NASA Ames Research Center (ARC), Hydrometeorological Institute [Skopje], SENES Consultant Ltd., Université de Toulouse (UT), Laboratoire d'aérologie (LAERO), Université de Toulouse (UT)-Université de Toulouse (UT)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS) |
Jazyk: | angličtina |
Rok vydání: | 2007 |
Předmět: |
lcsh:Chemistry
[SDU.OCEAN]Sciences of the Universe [physics]/Ocean Atmosphere lcsh:QD1-999 010504 meteorology & atmospheric sciences 13. Climate action 010103 numerical & computational mathematics 0101 mathematics 01 natural sciences lcsh:Physics lcsh:QC1-999 0105 earth and related environmental sciences |
Zdroj: | Atmospheric Chemistry and Physics Atmospheric Chemistry and Physics, European Geosciences Union, 2007, 7 (18), pp.4731 Scopus-Elsevier Atmospheric Chemistry and Physics Discussions Atmospheric Chemistry and Physics Discussions, 2007, 7 (3), pp.8035-8085 Atmospheric Chemistry and Physics, 2007, 7 (18), pp.4731 Atmospheric Chemistry and Physics, Vol 7, Iss 18, Pp 4709-4731 (2007) Atmospheric Chemistry and Physics Discussions, European Geosciences Union, 2007, 7 (3), pp.8035-8085 HAL |
ISSN: | 1680-7316 1680-7324 1680-7367 1680-7375 |
Popis: | Transport and scavenging of chemical constituents in deep convection is important to understanding the composition of the troposphere and therefore chemistry-climate and air quality issues. High resolution cloud chemistry models have been shown to represent convective processing of trace gases quite well. To improve the representation of sub-grid convective transport and wet deposition in large-scale models, general characteristics, such as species mass flux, from the high resolution cloud chemistry models can be used. However, it is important to understand how these models behave when simulating the same storm. The intercomparison described here examines transport of six species. CO and O3, which are primarily transported, show good agreement among models and compare well with observations. Models that included lightning production of NOx reasonably predict NOx mixing ratios in the anvil compared with observations, but the NOx variability is much larger than that seen for CO and O3. Predicted anvil mixing ratios of the soluble species, HNO3, H2O2, and CH2O, exhibit significant differences among models, attributed to different schemes in these models of cloud processing including the role of the ice phase, the impact of cloud-modified photolysis rates on the chemistry, and the representation of the species chemical reactivity. The lack of measurements of these species in the convective outflow region does not allow us to evaluate the model results with observations. |
Databáze: | OpenAIRE |
Externí odkaz: |