Sums of squares representations on singular loci

Autor: Ngoc Hoang Anh Mai, Victor Magron
Přispěvatelé: University of Konstanz, Equipe Polynomial OPtimization (LAAS-POP), Laboratoire d'analyse et d'architecture des systèmes (LAAS), Université Toulouse Capitole (UT Capitole), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université Toulouse - Jean Jaurès (UT2J), Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Université Toulouse Capitole (UT Capitole), Université de Toulouse (UT), Institut de Mathématiques de Toulouse UMR5219 (IMT), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS), This work was supported by the FastQI grant funded by the Institut Quantique Occitan, the PHC Proteus grant 46195TA, the National Research Foundation, Prime Minister’s Office, Singapore under its Campus for Research Excellence and Technological Enterprise (CREATE) programme., ANR-19-P3IA-0004,ANITI,Artificial and Natural Intelligence Toulouse Institute(2019), ANR-11-LABX-0040,CIMI,Centre International de Mathématiques et d'Informatique (de Toulouse)(2011), ANR-18-ERC2-0004,COPS,Optimisation garantie pour la vérification des systèmes cyber-physiques(2018), European Project: 813211,H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (Main Programme), H2020-EU.1.3.1. - Fostering new skills by means of excellent initial training of researchers ,10.3030/813211,POEMA(2019)
Jazyk: angličtina
Rok vydání: 2023
Předmět:
Popis: The problem of characterizing a real polynomial $f$ as a sum of squares of polynomials on a real algebraic variety $V$ dates back to the pioneering work of Hilbert in [Mathematische Annalen 32.3 (1888): 342-350]. In this paper, we investigate this problem with a focus on cases where the real zeros of $f$ on $V$ are singular points of $V$. By using optimality conditions and irreducible decomposition, we provide a positive answer to the following essential question of polynomial optimization: Are there always exact semidefinite programs to compute the minimum value attained by a given polynomial over a given real algebraic variety? Our answer implies that Lasserre's hierarchy, which is known as a bridge between convex and non-convex programs with algebraic structures, has finite convergence not only in the generic case but also in the general case. As a result, we constructively prove that each hyperbolic program is equivalent to a semidefinite program.
Comment: 27 pages. arXiv admin note: substantial text overlap with arXiv:2211.12440
Databáze: OpenAIRE