OSD
Autor: | Nikos Nanos, David Begg, Sepehr Abrishami, Pasquale Ponterosso, Tofigh Hamidavi |
---|---|
Rok vydání: | 2020 |
Předmět: |
Iterative and incremental development
General Computer Science business.industry Computer science Interoperability Building and Construction Automation Building information modeling Control and Systems Engineering Architecture Systems engineering Robot Design process Generative Design business Architectural model Civil and Structural Engineering |
Zdroj: | Hamidavi, T, Abrishami, S, Ponterosso, P, Begg, D & Nanos, N 2020, ' OSD: a framework for the early stage parametric optimisation of the structural design in BIM-based platform ', Construction Innovation, vol. 20, no. 2, pp. 149-169 . https://doi.org/10.1108/CI-11-2019-0126 |
ISSN: | 1471-4175 |
DOI: | 10.1108/ci-11-2019-0126 |
Popis: | PurposeThe paper aims to leverage the importance of the integrated automatic structural design for tall buildings at the early stage. It proposes to use an automatic prototype to perform the structural design, analysis and optimisation in a building information modelling (BIM)-based platform. This process starts with extracting the required information from the architectural model in Revit Autodesk, such as boundary conditions and designs different options of the structural models in Robot Autodesk. In this process, Dynamo for Revit is used to define the mathematical functions to use different variables and generate various structural models. The paper aims to expand the domain of automation in the BIM platform to reduce the iterative process in different areas such as conceptual structural design and collaboration between architects and structural engineers to reduce the time and cost at the early stages.Design/methodology/approachThe paper begins with an exploratory research by adopting a qualitative methodology and using open-ended questions to achieve more information about the phenomenon of automation and interoperability between structural engineers and architects and gain new insight into this area. Furthermore, correlation research is used by adopting quantitative and short questions to compare the proposed prototype with the traditional process of the structural design and optimisation and the interoperability between architects and engineers and consequently, validate the research.FindingsAs an outcome of the research, a structural design optimisation (SDO) prototype was developed to semi-automate the structural design process of tall buildings at the early stages. Moreover, the proposed prototype can be used during the early stage of structural design in different areas such as residential buildings, bridges, truss, reinforced concrete detailing, etc. Moreover, comprehensive literature regarding using automation in structural design, optimisation process and interoperability between architects and engineers is conducted that provides a new insight to contribute to future research and development.Research limitations/implicationsDue to the time limit, the paper results may lack in a comprehensive automatic structural design process. Therefore, the researchers are encouraged to expand the workability of the prototype for a comprehensive automatic design check such as automatic design for the minimum deflection, displacement of different types of buildings.Practical implicationsThe prototype includes implications for the development of different automatic designs.Originality/valueThe focus of this paper is the optimisation of the structural design in the BIM platform by using automation. This combination is one of the novelties of this paper, and the existing literature has a very limited amount of information and similar work in this area, especially interoperability between architects and engineers. |
Databáze: | OpenAIRE |
Externí odkaz: |