Lattices in Tate modules
Autor: | Bjorn Poonen, Sergey Rybakov |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: |
Abelian variety
Pure mathematics Multidisciplinary Endomorphism Mathematics - Number Theory abelian variety Tate module Basis (universal algebra) Matrix (mathematics) Mathematics - Algebraic Geometry Dieudonné module Physical Sciences FOS: Mathematics Perfect field endomorphism Covariant transformation Number Theory (math.NT) Algebraic Geometry (math.AG) 14K02 (Primary) 14K05 (Secondary) Mathematics |
Zdroj: | Proceedings of the National Academy of Sciences of the United States of America |
Popis: | Refining a theorem of Zarhin, we prove that given a $g$-dimensional abelian variety $X$ and an endomorphism $u$ of $X$, there exists a matrix $A \in \operatorname{M}_{2g}(\mathbb{Z})$ such that each Tate module $T_\ell X$ has a $\mathbb{Z}_\ell$-basis on which the action of $u$ is given by $A$. 3 pages |
Databáze: | OpenAIRE |
Externí odkaz: |