Lattices in Tate modules

Autor: Bjorn Poonen, Sergey Rybakov
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: Proceedings of the National Academy of Sciences of the United States of America
Popis: Refining a theorem of Zarhin, we prove that given a $g$-dimensional abelian variety $X$ and an endomorphism $u$ of $X$, there exists a matrix $A \in \operatorname{M}_{2g}(\mathbb{Z})$ such that each Tate module $T_\ell X$ has a $\mathbb{Z}_\ell$-basis on which the action of $u$ is given by $A$.
3 pages
Databáze: OpenAIRE