Quantitative scheme for full-field polarization rotating fluorescence microscopy using a liquid crystal variable retarder
Autor: | Matthew L. Clarke, Dan L. Sackett, Jeeseong Hwang, Ralph Nossal, Robert P. H. Chang, John F. Lesoine, Ji Youn Lee, Jeffrey R. Krogmeier, Hyeonggon Kang |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2012 |
Předmět: |
Fluorophore
Polarization rotator Materials science Optical Phenomena Rotation business.industry Linear polarization Polarization Microscopy Elliptical polarization Polarization (waves) Molecular physics Fluorescence spectroscopy Liquid Crystals chemistry.chemical_compound Microscopy and Imaging Optics chemistry Microscopy Fluorescence Cell Line Tumor Humans business Instrumentation Fluorescence anisotropy Fluorescent Dyes |
Popis: | We present a quantitative scheme for full-field polarization rotating fluorescence microscopy. A quarter-wave plate, in combination with a liquid crystal variable retarder, provides a tunable method to rotate polarization states of light prior to its being coupled into a fluorescence microscope. A calibration of the polarization properties of the incident light is performed in order to correct for elliptical polarization states. This calibration allows the response of the sample to linear polarization states of light to be recovered. Three known polarization states of light can be used to determine the average fluorescent dipole orientations in the presence of a spatially varying dc offset or background polarization-invariant fluorescence signal. To demonstrate the capabilities of this device, we measured a series of full-field fluorescence polarization images from fluorescent analogs incorporated in the lipid membrane of Burkitts lymphoma CA46 cells. The fluorescent lipid-like analogs used in this study are molecules that are labeled by either a DiI (1,1(')-Dioctadecyl 3,3,3('),3(')-Tetramethylindocarbocyanine) fluorophore in its head group or a Bodipy (4,4-difluoro-4-bora-3a,4a-diaza-s-indacene) molecule in its acyl chain. A spatially varying contrast in the normalized amplitude was observed on the cell surface, where the orientation of the DiI molecules is tangential to the cell membrane. The internally labeled cellular structures showed zero response to changes in linear polarization, and the net linear polarization amplitude for these regions was zero. This instrument provides a low cost calibrated method that may be coupled to existing fluorescence microscopes to perform investigations of cellular processes that involve a change in molecular orientations. |
Databáze: | OpenAIRE |
Externí odkaz: |