(Logarithmic) densities for automatic sequences along primes and squares

Autor: Boris Adamczewski, Clemens Müllner, Michael Drmota
Přispěvatelé: Institut Camille Jordan (ICJ), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS), Combinatoire, théorie des nombres (CTN), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL), European Project: 648132,H2020,ERC-2014-CoG,ANT(2015)
Rok vydání: 2021
Předmět:
Zdroj: Transactions of the American Mathematical Society
Transactions of the American Mathematical Society, 2021, pp.1. ⟨10.1090/tran/8476⟩
ISSN: 1088-6850
0002-9947
DOI: 10.1090/tran/8476
Popis: In this paper we develop a method to transfer density results for primitive automatic sequences to logarithmic-density results for general automatic sequences. As an application we show that the logarithmic densities of any automatic sequence along squares $(n^2)_{n\geq 0}$ and primes $(p_n)_{n\geq 1}$ exist and are computable. Furthermore, we give for these subsequences a criterion to decide whether the densities exist, in which case they are also computable. In particular in the prime case these densities are all rational. We also deduce from a recent result of the third author and Lema\'nczyk that all subshifts generated by automatic sequences are orthogonal to any bounded multiplicative aperiodic function.
Comment: 35 pages. We added an Appendix concerning upper densities of subsequences of automatic sequences
Databáze: OpenAIRE