A global invariant for path structures and second order differential equations

Autor: Falbel, Elisha, Veloso, Jose Miguel
Přispěvatelé: Institut de Mathématiques de Jussieu - Paris Rive Gauche (IMJ-PRG (UMR_7586)), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), OUtils de Résolution Algébriques pour la Géométrie et ses ApplicatioNs (OURAGAN), Inria de Paris, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), Instituto de Ciências Exatas e Naturais (ICEN), Faculdade de Matemática [Universidade Federal do Pará] (UFPA), Federal University of Para - Universidade Federal do Pará - UFPA [Belém, Brazil] (UFPA)-Federal University of Para - Universidade Federal do Pará - UFPA [Belém, Brazil] (UFPA), Federal University of Para - Universidade Federal do Pará - UFPA [Belém, Brazil] (UFPA)
Jazyk: angličtina
Rok vydání: 2023
Předmět:
Popis: We study a global invariant for path structures. The invariant is obtained as a secondary invariant from a Cartan connection on a canonical bundle associated to a path structure. It is computed in examples which are defined in terms of reductions of the path structure. In particular we give a formula for this global invariant for second order differential equations defined on a torus $T^2$.
Databáze: OpenAIRE