The interplay between calcite, amorphous calcium carbonate and intra-crystalline organics in sea urchin skeletal elements
Autor: | Mathieu Bennet, Emil Zolotoyabko, Marie Albéric, Luca Bertinetti, Nadine Nassif, Widad Ajili, Peter Fratzl, Yael Politi, El'ad N. Caspi, Thierry Azaïs, Alex Berner |
---|---|
Přispěvatelé: | Max Planck Institute of Colloids and Interfaces, Max-Planck-Gesellschaft, Spectroscopie, Modélisation, Interfaces pour L'Environnement et la Santé (SMiLES), Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), Université Pierre et Marie Curie - Paris 6 (UPMC)-Collège de France (CdF (institution))-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Collège de France (CdF (institution))-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Matériaux Hybrides et Nanomatériaux (MHN), Technion - Israel Institute of Technology [Haifa], Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Collège de France (CdF (institution))-Institut de Chimie du CNRS (INC)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Collège de France (CdF (institution))-Institut de Chimie du CNRS (INC) |
Jazyk: | angličtina |
Rok vydání: | 2018 |
Předmět: |
02 engineering and technology
Test (biology) 010402 general chemistry 01 natural sciences Paracentrotus lividus law.invention chemistry.chemical_compound law biology.animal General Materials Science Crystallization Sea urchin Calcite biology Chemistry General Chemistry [CHIM.MATE]Chemical Sciences/Material chemistry 021001 nanoscience & nanotechnology Condensed Matter Physics biology.organism_classification Amorphous calcium carbonate 0104 chemical sciences Chemical engineering Anhydrous 0210 nano-technology Biomineralization |
Zdroj: | Crystal Growth & Design Crystal Growth & Design, American Chemical Society, 2018, 18 (4), pp.2189-2201. ⟨10.1021/acs.cgd.7b01622⟩ |
ISSN: | 1528-7483 1528-7505 |
DOI: | 10.1021/acs.cgd.7b01622⟩ |
Popis: | International audience; Biomineralization processes in living organisms result in the formation of skeletal elements with complex ultrastructures. Although the formation pathways in sea urchin larvae are known, the interrelation between calcite, amorphous calcium carbonate (ACC), and intra-crystalline organics in adult sea urchin biominerals is less clear. Here, we study this interplay in the spines and test 2 plates of the Paracentrotus lividus sea urchins whose skeletal elements have optimized function-properties relationships. Thermogravimetric analysis coupled with differential scanning calorimetry or mass spectrometry measurements, nuclear magnetic resonance technique and high-resolution powder X-ray diffraction show that pristine spines and test plates are composed of Mg-rich calcite and comprise about 10 wt. % of anhydrous ACC, 1.2 to 1.6 wt. % of organics, and less than 0.2 wt. % of water. Anhydrous ACC originates from incomplete crystallization of a precursor ACC phase during biomineralization and is associated with intra-crystalline organics at the molecular level. Molecular interactions at organic/inorganic interfaces cause significant calcite lattice distortions of the tensile type. The latter are amplified during ACC crystallization and finally disappear after heat-assisted destruction of organic molecules. Converting the measured lattice distortions (strains) into internal stress components, we follow stress evolution upon annealing and find that complete crystallization of ACC leads to the isotropy of residual stresses in all investigated skeletal parts. These results allow us to speculate that organic macromolecules are preferentially attached to different crystallographic planes in the pristine test and spine samples. |
Databáze: | OpenAIRE |
Externí odkaz: |