Serial mixed-mode cation- and anion-exchange solid-phase extraction for separation of basic, neutral and acidic pharmaceuticals in wastewater and analysis by high-performance liquid chromatography–quadrupole time-of-flight mass spectrometry

Autor: Tomas Alsberg, Yong Yu, Hongwen Sun, Martin Lavén, Margaretha Adolfsson-Erici
Rok vydání: 2009
Předmět:
Zdroj: Journal of Chromatography A. 1216:49-62
ISSN: 0021-9673
DOI: 10.1016/j.chroma.2008.11.014
Popis: A novel solid-phase extraction (SPE) method is presented whereby 15 basic, neutral and acidic pharmaceuticals in wastewater were simultaneously extracted and subsequently separated into different fractions. This was achieved using mixed-mode cation- and anion-exchange SPE (Oasis MCX and MAX) in series. Analysis was performed by high-performance liquid chromatography–quadrupole time-of-flight mass spectrometry (HPLC/QTOF-MS). A fast separation was achieved, with all compounds eluting within 6 min, narrow chromatographic peaks, with a peak base width of 6 s on average, and a high mass accuracy of quantified wastewater sample ions, with average mass errors in absolute value of 0.7 mDa or 2.7 ppm. The recovery of the SPE method in the analysis of sewage treatment plant (STP) influent and effluent wastewater was on average 80% and the ion suppression 30%. For less demanding samples Oasis MCX used alone may be an alternative method, although for STP influent waters containing high loads of organic compounds the clean-up achieved using only Oasis MCX was insufficient, leading to unreliable quantitation. Furthermore, serial SPE separation according to molecular charge added an additional degree of analyte confirmation. For quantitation, an approach combining external standard calibration curves, isotopically labelled surrogate standards and single-point standard addition was used. The applicability of the method was demonstrated in the analysis of influent and effluent wastewater from an STP, using small sample volumes (25–50 mL). The effluent wastewater had been subjected to three different treatments; activated sludge, activated sludge followed by ozonation, and a membrane bioreactor (MBR). Ozone treatment proved superior in removal of the analysed pharmaceuticals, while the MBR provided higher removal efficiencies than the activated sludge process.
Databáze: OpenAIRE