Detection of magnetic galactic binaries in quasi-circular orbit with LISA

Autor: Savalle, E, Bourgoin, A, Le Poncin-Lafitte, C, Mathis, S, Angonin, M.-C, Aykroyd, C
Přispěvatelé: Département de Physique des Particules (ex SPP) (DPhP), Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Systèmes de Référence Temps Espace (SYRTE), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Astrophysique Interprétation Modélisation (AIM (UMR7158 / UMR_E_9005 / UM_112)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)
Rok vydání: 2023
Předmět:
High Energy Astrophysical Phenomena (astro-ph.HE)
LISA
FOS: Physical sciences
magnetic field
General Relativity and Quantum Cosmology (gr-qc)
General Relativity and Quantum Cosmology
Astrophysics - Solar and Stellar Astrophysics
galaxy: binary
gravitational radiation: emission
[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]
[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]
gravitational radiation: frequency
white dwarf
neutron star
[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
Astrophysics - High Energy Astrophysical Phenomena
Astrophysics - Instrumentation and Methods for Astrophysics
Instrumentation and Methods for Astrophysics (astro-ph.IM)
orbit
Solar and Stellar Astrophysics (astro-ph.SR)
energy: magnetic
DOI: 10.48550/arxiv.2304.07294
Popis: Laser Interferometer Space Antenna (LISA) will observe gravitational waves from galactic binaries (GBs) of white dwarfs or neutron stars. Some of these objects are among the most magnetic astrophysical objects in the Universe. Magnetism, by secularly disrupting the orbit, can eventually affect the gravitational waves emission and could then be potentially detected and characterized after several years of observations by LISA. Currently, the data processing pipeline of the LISA Data Challenge (LDC) for GBs does not consider either magnetism or eccentricity. Recently, it was shown [Bourgoin et al. PRD 105, 124042 (2022)] that magnetism induces a shift on the gravitational wave frequencies. Additionally, it was argued that, if the binary's orbit is eccentric, the presence of magnetism could be detected by LISA. In this work, we explore the consequences of a future data analysis conducted on quasi-circular and magnetic GB systems using the current LDC tools. We first show that a single eccentric GB can be interpreted as several GBs and this can eventually bias population studies deduced from LISA's future catalog. Then, we confirm that for quasi-circular orbits, the secular magnetic energy of the system can be inferred if the signal-to-noise ratio of the second harmonic is high enough to be detected by traditional quasi-monochromatic source searching algorithms. LISA observations could therefore bring new insights on the nature and origin of magnetic fields in white dwarfs or neutron stars.
Comment: 18 pages, 6 figures
Databáze: OpenAIRE