Inhibition of Eukaryotic Translation by the Antitumor Natural Product Agelastatin A

Autor: Jun O. Liu, Safiat Ayinde, Rachel Green, Marat Yusupov, Brandon McClary, Junyan Lu, Mélanie Meyer, Daniel Romo, Anthony P Schuller, Boris Zinshteyn, Cheng Luo, Zufeng Guo, Gulnara Yusupova, Jeremy Chris P. Reyes, Morgan Jouanneau, Simone Pellegrino, Yongjun Dang
Přispěvatelé: Johns Hopkins University School of Medicine [Baltimore], Howard Hughes Medical Institute (HHMI), Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg (UNISTRA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Baylor University, Texas A&M University [College Station], Shanghai Institute of Materia Medica - Chinese Academy of Sciences [Shanghai], Fudan University [Shanghai], Yusupova, Gulnara
Rok vydání: 2016
Předmět:
0301 basic medicine
drug design
Protein Conformation
[SDV]Life Sciences [q-bio]
Clinical Biochemistry
Antineoplastic Agents
Biology
01 natural sciences
Biochemistry
Ribosome
Article
03 medical and health sciences
Eukaryotic translation
Alkaloids
Drug Discovery
Protein biosynthesis
Humans
Molecular Biology
Oxazolidinones
Pharmacology
brain cancer
Biological Products
Dose-Response Relationship
Drug

010405 organic chemistry
Translation (biology)
molecular docking
Ribosomal RNA
Footprinting
0104 chemical sciences
marine alkaloid
peptidyl transferase center
rRNA seq
translation elongation
agelastatin A
[SDV] Life Sciences [q-bio]
Molecular Docking Simulation
A-site
030104 developmental biology
ribosome
Protein Biosynthesis
Molecular Medicine
chemical footprinting
Eukaryotic Ribosome
Ribosomes
HeLa Cells
Zdroj: Cell Chemical Biology
Cell Chemical Biology, 2017, 24 (5), pp.605-613.e5. ⟨10.1016/j.chembiol.2017.04.006⟩
ISSN: 2451-9448
2451-9456
DOI: 10.1016/j.chembiol.2017.04.006⟩
Popis: International audience; Protein synthesis plays an essential role in cell proliferation, differentiation, and survival. Inhibitors of eukaryotic translation have entered the clinic, establishing the translation machinery as a promising target for chemotherapy. A recently discovered, structurally unique marine sponge-derived brominated alkaloid, (-)-agelastatin A (AglA), possesses potent antitumor activity. Its underlying mechanism of action, however, has remained unknown. Using a systematic top-down approach, we show that AglA selectively inhibits protein synthesis. Using a high-throughput chemical footprinting method, we mapped the AglA-binding site to the ribosomal A site. A 3.5 Å crystal structure of the 80S eukaryotic ribosome from S. cerevisiae in complex with AglA was obtained, revealing multiple conformational changes of the nucleotide bases in the ribosome accompanying the binding of AglA. Together, these results have unraveled the mechanism of inhibition of eukaryotic translation by AglA at atomic level, paving the way for future structural modifications to develop AglA analogs into novel anticancer agents.
Databáze: OpenAIRE