Integration of knowledge to support automatic object reconstruction from images and 3D data
Autor: | Andreas Marbs, Ashish Karmacharya, Helmi Ben Hmida, Adlane Habed, Christophe Cruz, Hung Truong, Yvon Voisin, Frank Boochs, Christophe Nicolle |
---|---|
Přispěvatelé: | i3mainz - Institut für Raumbezogene Informations- und Messtechnik ( i3mainz ), FH Mainz, Institut für Raumbezogene Informations und Messtechnik ( i3mainz ), FH Mainz-http://www.fh-mainz.de, Laboratoire Electronique, Informatique et Image ( Le2i ), Université de Bourgogne ( UB ) -AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement-Centre National de la Recherche Scientifique ( CNRS ), Checksem, Université de Bourgogne ( UB ) -AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement-Centre National de la Recherche Scientifique ( CNRS ) -Université de Bourgogne ( UB ) -AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement-Centre National de la Recherche Scientifique ( CNRS ), i3mainz - Institut für Raumbezogene Informations- und Messtechnik (i3mainz), Institut für Raumbezogene Informations und Messtechnik (i3mainz), Laboratoire Electronique, Informatique et Image [UMR6306] (Le2i), Université de Bourgogne (UB)-Centre National de la Recherche Scientifique (CNRS)-École Nationale Supérieure d'Arts et Métiers (ENSAM), Arts et Métiers Sciences et Technologies, HESAM Université (HESAM)-HESAM Université (HESAM)-Arts et Métiers Sciences et Technologies, HESAM Université (HESAM)-HESAM Université (HESAM)-AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement, HESAM Université (HESAM)-HESAM Université (HESAM)-AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement-Université de Bourgogne (UB)-Centre National de la Recherche Scientifique (CNRS)-École Nationale Supérieure d'Arts et Métiers (ENSAM) |
Jazyk: | angličtina |
Rok vydání: | 2013 |
Předmět: |
Computational Geometry (cs.CG)
FOS: Computer and information sciences Speedup [ INFO.INFO-TS ] Computer Science [cs]/Signal and Image Processing Computer science Process (engineering) Computer Science - Artificial Intelligence Point cloud Image processing 02 engineering and technology [ SPI.SIGNAL ] Engineering Sciences [physics]/Signal and Image processing computer.software_genre [INFO.INFO-CG]Computer Science [cs]/Computational Geometry [cs.CG] [INFO.INFO-AI]Computer Science [cs]/Artificial Intelligence [cs.AI] [INFO.INFO-TS]Computer Science [cs]/Signal and Image Processing 0202 electrical engineering electronic engineering information engineering [ INFO.INFO-AI ] Computer Science [cs]/Artificial Intelligence [cs.AI] Structure (mathematical logic) Interpretation (philosophy) Object (computer science) Visualization Artificial Intelligence (cs.AI) [ INFO.INFO-CG ] Computer Science [cs]/Computational Geometry [cs.CG] Computer Science - Computational Geometry 020201 artificial intelligence & image processing Data mining computer [SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processing |
Zdroj: | Proceeding of the 8th International Multi-Conference on Systems, Signals and Devices (SSD), 2011 Systems, Signals and Devices (SSD), 2011 8th International Multi-Conference on Systems, Signals and Devices (SSD), 2011 8th International Multi-Conference on, Mar 2011, Chemnitz, Germany. pp.1-13, 2011, 〈10.1109/SSD.2011.5993558〉 Systems, Signals and Devices (SSD), 2011 8th International Multi-Conference on, Mar 2011, Chemnitz, Germany. pp.1-13, ⟨10.1109/SSD.2011.5993558⟩ |
DOI: | 10.1109/SSD.2011.5993558〉 |
Popis: | International audience; Object reconstruction is an important task in many fields of application as it allows to generate digital representations of our physical world used as base for analysis, planning, construction, visualization or other aims. A reconstruction itself normally is based on reliable data (images, 3D point clouds for example) expressing the object in his complete extent. This data then has to be compiled and analyzed in order to extract all necessary geometrical elements, which represent the object and form a digital copy of it. Traditional strategies are largely based on manual interaction and interpretation, because with increasing complexity of objects human understanding is inevitable to achieve acceptable and reliable results. But human interaction is time consuming and expensive, why many researches has already been invested to use algorithmic support, what allows to speed up the process and to reduce manual work load. Presently most of such supporting algorithms are data-driven and concentate on specific features of the objects, being accessible to numerical models. By means of these models, which normally will represent geometrical (flatness, roughness, for example) or physical features (color, texture), the data is classified and analyzed. This is successful for objects with low complexity, but gets to its limits with increasing complexness of objects. Then purely numerical strategies are not able to sufficiently model the reality. Therefore, the intention of our approach is to take human cognitive strategy as an example, and to simulate extraction processes based on available human defined knowledge for the objects of interest. Such processes will introduce a semantic structure for the objects and guide the algorithms used to detect and recognize objects, which will yield a higher effectiveness. Hence, our research proposes an approach using knowledge to guide the algorithms in 3D point cloud and image processing. |
Databáze: | OpenAIRE |
Externí odkaz: |