MyoD is a 3D genome structure organizer for muscle cell identity

Autor: Ruiting Wang, Fengling Chen, Qian Chen, Xin Wan, Minglei Shi, Antony K. Chen, Zhao Ma, Guohong Li, Min Wang, Yachen Ying, Qinyao Liu, Hu Li, Xu Zhang, Jinbiao Ma, Jiayun Zhong, Meihong Chen, Michael Q. Zhang, Yong Zhang, Yang Chen, Dahai Zhu
Rok vydání: 2020
Předmět:
Zdroj: Nature Communications
Nature Communications, Vol 13, Iss 1, Pp 1-17 (2022)
ISSN: 2041-1723
Popis: The genome exists as an organized, three-dimensional (3D) dynamic architecture, and each cell type has a unique 3D genome organization that determines its cell identity. An unresolved question is how cell type-specific 3D genome structures are established during development. Here, we analyzed 3D genome structures in muscle cells from mice lacking the muscle lineage transcription factor (TF), MyoD, versus wild-type mice. We show that MyoD functions as a “genome organizer” that specifies 3D genome architecture unique to muscle cell development, and that H3K27ac is insufficient for the establishment of MyoD-induced chromatin loops in muscle cells. Moreover, we present evidence that other cell lineage-specific TFs might also exert functional roles in orchestrating lineage-specific 3D genome organization during development.
Pioneer transcription factors (TFs) have been proposed to act as protein anchors to orchestrate cell type-specific 3D genome architecture. MyoD is a pioneer TF for myogenic lineage specification. Here the authors provide further support for the role of MyoD in 3D genome architecture in muscle stem cells by comparing MyoD knockout and wild-type mice.
Databáze: OpenAIRE