On the Turnpike Property and the Receding-Horizon Method for Linear-Quadratic Optimal Control Problems

Autor: Laurent Pfeiffer, Tobias Breiten
Přispěvatelé: University of Graz, Controle, Optimisation, modèles, Méthodes et Applications pour les Systèmes Dynamiques non linéaires (COMMANDS), Centre de Mathématiques Appliquées - Ecole Polytechnique (CMAP), École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS)-Inria Saclay - Ile de France, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), Karl-Franzens-Universität Graz, Karl-Franzens-Universität [Graz, Autriche]
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: SIAM Journal on Control and Optimization
SIAM Journal on Control and Optimization, Society for Industrial and Applied Mathematics, 2020, 58 (2), pp.26. ⟨10.1137/18M1225811⟩
SIAM Journal on Control and Optimization, 2020, 58 (2), pp.26. ⟨10.1137/18M1225811⟩
ISSN: 0363-0129
1095-7138
DOI: 10.1137/18M1225811⟩
Popis: International audience; Optimal control problems with a very large time horizon can be tackled with the Receding Horizon Control (RHC) method, which consists in solving a sequence of optimal control problems with small prediction horizon. The main result of this article is the proof of the exponential convergence (with respect to the prediction horizon) of the control generated by the RHC method towards the exact solution of the problem. The result is established for a class of infinite-dimensional linear-quadratic optimal control problems with time-independent dynamics and integral cost. Such problems satisfy the turnpike property: the optimal trajectory remains most of the time very close to the solution to the associated static optimization problem. Specific terminal cost functions, derived from the Lagrange multiplier associated with the static optimization problem, are employed in the implementation of the RHC method.
Databáze: OpenAIRE