Metabolism of 2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) by Human CYP1B1 Genetic Variants
Autor: | Jun-Yan Hong, Jason S. Herrington, Lori A. White, Xiao-Yang He, Jing-Fen Han, Junfeng Zhang |
---|---|
Rok vydání: | 2008 |
Předmět: |
Insecta
CYP1B1 Population Pharmaceutical Science Isozyme Cell Line chemistry.chemical_compound Cytochrome P-450 Enzyme System Species Specificity Microsomes Animals Humans education Pharmacology chemistry.chemical_classification education.field_of_study 2-Amino-1-methyl-6-phenylimidazo(4 5-b)pyridine biology Imidazoles Genetic Variation Cytochrome P450 Rats Amino acid body regions Enzyme chemistry Biochemistry Cytochrome P-450 CYP1B1 biology.protein Microsome Aryl Hydrocarbon Hydroxylases Metabolic Networks and Pathways |
Zdroj: | Drug Metabolism and Disposition. 36:745-752 |
ISSN: | 1521-009X 0090-9556 |
DOI: | 10.1124/dmd.107.016824 |
Popis: | Human cytochrome P450 1B1 (CYP1B1) plays a critical role in the metabolic activation of a variety of procarcinogens, including 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP). The existence of human CYP1B1 missense genetic variants has been demonstrated, but their activities in metabolizing PhIP are unknown. In this study, we expressed 15 naturally occurring CYP1B1 variants (with either single or multiple amino acid substitutions) and determined their activity changes in metabolizing PhIP to its two major metabolites, 2-hydroxyamino-PhIP and 4'-hydroxy-PhIP. Although the PhIP-metabolizing activities of four variants (Ala(119)Ser, Pro(379)Leu, Ala(443)Gly, Arg(48)Gly/Leu(432)Val) were comparable with that of the expressed wild-type CYP1B1, five variants (Trp(57)Cys, Gly(61)Glu, Arg(48)Gly/Ala(119)Ser, Arg(48)Gly/Ala(119)Ser/Leu(432)Val, Arg(48)Gly/Ala(119)Ser/Leu(432)Val/Ala(443)Gly) exhibited more than 2-fold decrease in activity and a reduction in the catalytic efficiency (V(max)/K(m)) for both N- and 4-hydroxylation of PhIP. Six variants (Gly(365)Trp, Glu(387)Lys, Arg(390)His, Pro(437)Leu, Asn(453)Ser, Arg(469)Trp) showed little activity in PhIP metabolism, but the molecular mechanisms involved are apparently different. The microsomal CYP1B1 protein level was significantly decreased for the Trp(365), Lys(387), and His(390) variants and was not detectable for the Ser(453) variant. In contrast, there was no difference between the Trp(469) variant and the wild-type in the microsomal CYP1B1 protein level and P450 content but the Trp(469) variant totally lost its metabolic activity toward PhIP. The Leu(437) variant also had a substantial amount of CYP1B1 protein in the microsomes, but there was a lack of detectable P450 peak and activity. Our results should be useful in selecting appropriate CYP1B1 variants as cancer susceptibility biomarkers for human population studies related to PhIP exposure. |
Databáze: | OpenAIRE |
Externí odkaz: |