Quasistatic porous-thermoelastic problems: an a priori error analysis

Autor: José A. López-Campos, José R. Fernández, Jacobo Baldonedo
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: Investigo. Repositorio Institucional de la Universidade de Vigo
Universidade de Vigo (UVigo)
Mathematics, Vol 9, Iss 1436, p 1436 (2021)
Mathematics
Volume 9
Issue 12
Popis: In this paper, we deal with the numerical approximation of some porous-thermoelastic problems. Since the inertial effects are assumed to be negligible, the resulting motion equations are quasistatic. Then, by using the finite element method and the implicit Euler scheme, a fully discrete approximation is introduced. We prove a discrete stability property and a main error estimates result, from which we conclude the linear convergence under appropriate regularity conditions on the continuous solution. Finally, several numerical simulations are shown to demonstrate the accuracy of the approximation, the behavior of the solution and the decay of the discrete energy. Ministerio de Ciencia, Innovación y Universidades | Ref. PGC2018-096696-B-I00
Databáze: OpenAIRE