Quasistatic porous-thermoelastic problems: an a priori error analysis
Autor: | José A. López-Campos, José R. Fernández, Jacobo Baldonedo |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: |
a priori error estimates
porosity Inertial frame of reference General Mathematics 1202 Análisis y Análisis Funcional 1206 Análisis Numérico 02 engineering and technology 01 natural sciences Stability (probability) Thermoelastic damping discrete stability 0203 mechanical engineering QA1-939 Computer Science (miscellaneous) Applied mathematics 0101 mathematics Engineering (miscellaneous) Mathematics Equations of motion Backward Euler method 2213 Termodinámica numerical behavior Finite element method 010101 applied mathematics thermoelasticity 020303 mechanical engineering & transports Rate of convergence finite elements Quasistatic process |
Zdroj: | Investigo. Repositorio Institucional de la Universidade de Vigo Universidade de Vigo (UVigo) Mathematics, Vol 9, Iss 1436, p 1436 (2021) Mathematics Volume 9 Issue 12 |
Popis: | In this paper, we deal with the numerical approximation of some porous-thermoelastic problems. Since the inertial effects are assumed to be negligible, the resulting motion equations are quasistatic. Then, by using the finite element method and the implicit Euler scheme, a fully discrete approximation is introduced. We prove a discrete stability property and a main error estimates result, from which we conclude the linear convergence under appropriate regularity conditions on the continuous solution. Finally, several numerical simulations are shown to demonstrate the accuracy of the approximation, the behavior of the solution and the decay of the discrete energy. Ministerio de Ciencia, Innovación y Universidades | Ref. PGC2018-096696-B-I00 |
Databáze: | OpenAIRE |
Externí odkaz: |