Classical analog of the quantum metric tensor
Autor: | J. David Vergara, Diego Gonzalez, Daniel Gutiérrez-Ruiz |
---|---|
Rok vydání: | 2018 |
Předmět: |
Physics
High Energy Physics - Theory Quantum Physics Statistical Mechanics (cond-mat.stat-mech) Anharmonicity Classical Physics (physics.class-ph) FOS: Physical sciences Physics - Classical Physics Parameter space 01 natural sciences 010305 fluids & plasmas High Energy Physics - Theory (hep-th) Quantum state Phase space 0103 physical sciences Metric (mathematics) Metric tensor (general relativity) Quantum Physics (quant-ph) 010306 general physics Quantum Harmonic oscillator Condensed Matter - Statistical Mechanics Mathematical physics |
Zdroj: | Physical review. E. 99(3-1) |
ISSN: | 2470-0053 |
Popis: | We present a classical analog of the quantum metric tensor, which is defined for classical integrable systems that undergo an adiabatic evolution governed by slowly varying parameters. This classical metric measures the distance, on the parameter space, between two infinitesimally different points in phase space, whereas the quantum metric tensor measures the distance between two infinitesimally different quantum states. We discuss the properties of this metric and calculate its components, exactly in the cases of the generalized harmonic oscillator, the generalized harmonic oscillator with a linear term, and perturbatively for the quartic anharmonic oscillator. Finally, we propose alternative expressions for the quantum metric tensor and Berry's connection in terms of quantum operators. 13 pages |
Databáze: | OpenAIRE |
Externí odkaz: |