A New Missing Data Imputation Algorithm Applied to Electrical Data Loggers

Autor: Fernando Las-Heras, Concepción Crespo Turrado, A. Piñón-Pazos, José Luis Calvo-Rolle, Francisco Javier de Cos Juez
Jazyk: angličtina
Rok vydání: 2015
Předmět:
Zdroj: Sensors (Basel, Switzerland)
Scopus
Sensors, Vol 15, Iss 12, Pp 31069-31082 (2015)
Sensors; Volume 15; Issue 12; Pages: 31069-31082
Sensors
Volume 15
Issue 12
Pages 31069-31082
RUO. Repositorio Institucional de la Universidad de Oviedo
instname
RUC. Repositorio da Universidade da Coruña
ISSN: 1424-8220
2014-5764
Popis: Nowadays, data collection is a key process in the study of electrical power networks when searching for harmonics and a lack of balance among phases. In this context, the lack of data of any of the main electrical variables (phase-to-neutral voltage, phase-to-phase voltage, and current in each phase and power factor) adversely affects any time series study performed. When this occurs, a data imputation process must be accomplished in order to substitute the data that is missing for estimated values. This paper presents a novel missing data imputation method based on multivariate adaptive regression splines (MARS) and compares it with the well-known technique called multivariate imputation by chained equations (MICE). The results obtained demonstrate how the proposed method outperforms the MICE algorithm. Ministerio de Economía y Competitividad; AYA2014-57648-P Asturias (Comunidad Autónoma). Consejería de Economía y Empleo; FC-15-GRUPIN14-017
Databáze: OpenAIRE