A New Missing Data Imputation Algorithm Applied to Electrical Data Loggers
Autor: | Fernando Las-Heras, Concepción Crespo Turrado, A. Piñón-Pazos, José Luis Calvo-Rolle, Francisco Javier de Cos Juez |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2015 |
Předmět: |
Multivariate statistics
Engineering quality of electric supply Current Poison control Multivariate imputation by chained equations (mice) Power factor lcsh:Chemical technology computer.software_genre Biochemistry Article Analytical Chemistry missing data imputation Multivariate adaptive regression splines (mars) Quality of electric supply Data logger lcsh:TP1-1185 Imputation (statistics) Electrical and Electronic Engineering multivariate imputation by chained equations (MICE) Multivariate adaptive regression splines (MARS) voltage current power factor Instrumentation Multivariate adaptive regression splines Data collection business.industry Missing data imputation Voltage Missing data Atomic and Molecular Physics and Optics Data mining business Algorithm computer |
Zdroj: | Sensors (Basel, Switzerland) Scopus Sensors, Vol 15, Iss 12, Pp 31069-31082 (2015) Sensors; Volume 15; Issue 12; Pages: 31069-31082 Sensors Volume 15 Issue 12 Pages 31069-31082 RUO. Repositorio Institucional de la Universidad de Oviedo instname RUC. Repositorio da Universidade da Coruña |
ISSN: | 1424-8220 2014-5764 |
Popis: | Nowadays, data collection is a key process in the study of electrical power networks when searching for harmonics and a lack of balance among phases. In this context, the lack of data of any of the main electrical variables (phase-to-neutral voltage, phase-to-phase voltage, and current in each phase and power factor) adversely affects any time series study performed. When this occurs, a data imputation process must be accomplished in order to substitute the data that is missing for estimated values. This paper presents a novel missing data imputation method based on multivariate adaptive regression splines (MARS) and compares it with the well-known technique called multivariate imputation by chained equations (MICE). The results obtained demonstrate how the proposed method outperforms the MICE algorithm. Ministerio de Economía y Competitividad; AYA2014-57648-P Asturias (Comunidad Autónoma). Consejería de Economía y Empleo; FC-15-GRUPIN14-017 |
Databáze: | OpenAIRE |
Externí odkaz: |