Stoichiometric Lithium Niobate Crystals: Towards Identifiable Wireless Surface Acoustic Wave Sensors Operable up to 600$^\circ$C

Autor: Omar Elmazria, Jeremy Streque, Vincent Polewczyk, Edvard Kokanyan, Florian Bartoli, Sami Hage-Ali, Thierry Aubert, Ninel Kokanyan, Amine Taguett, Pascal Boulet
Přispěvatelé: Institut Jean Lamour (IJL), Université de Lorraine (UL)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Matériaux Optiques, Photonique et Systèmes (LMOPS), CentraleSupélec-Université de Lorraine (UL), Institute for Physical Research of National Academy of Sciences of Armenia (IPR NAS RA), National Academy of Sciences of the Republic of Armenia [Yerevan] (NAS RA), IMPACT N4S, ANR-15-IDEX-0004,LUE,Isite LUE(2015)
Rok vydání: 2019
Předmět:
Electromechanical coupling coefficient
Diffraction
Materials science
Surface acoustic waves
Microsensors
Lithium niobate
FOS: Physical sciences
Physics - Classical Physics
Applied Physics (physics.app-ph)
01 natural sciences
Resonator
symbols.namesake
chemistry.chemical_compound
0103 physical sciences
Electrical and Electronic Engineering
[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics
010301 acoustics
Instrumentation
[SPI.ACOU]Engineering Sciences [physics]/Acoustics [physics.class-ph]
Condensed Matter - Materials Science
business.industry
010401 analytical chemistry
Surface acoustic wave
Materials Science (cond-mat.mtrl-sci)
Classical Physics (physics.class-ph)
Physics - Applied Physics
0104 chemical sciences
High-temperature sensors
Stoichiometric lithium niobate
chemistry
symbols
[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci]
Optoelectronics
Surface acoustic wave sensor
Raman spectroscopy
business
Stoichiometry
Zdroj: IEEE Sensors Letters
IEEE Sensors Letters, IEEE, 2019, 3 (4), pp.1-4. ⟨10.1109/LSENS.2019.2908691⟩
ISSN: 2475-1472
DOI: 10.48550/arxiv.1907.09998
Popis: Wireless surface acoustic wave (SAW) sensors constitute a promising solution to some unsolved industrial sensing issues taking place at high temperatures. Currently, this technology enables wireless measurements up to 600-700$^\circ$C at best. However, the applicability of such sensors remains incomplete since they do not allow identification above 400$^\circ$C. The latter would require the use of a piezoelectric substrate providing a large electromechanical coupling coefficient K 2 , while being stable at high temperature. In this letter, we investigate the potentiality of stoichiometric lithium niobate (sLN) crystals for such purpose. Raman spectroscopy and X-ray diffraction attest that sLN crystals withstand high temperatures up to 800$^\circ$C, at least for several days. In situ measurements of sLN-based SAW resonators conducted up to 600$^\circ$C show that the K 2 of these crystals remains high and stable throughout the whole experiment, which is very promising for the future achievement of identifiable wireless high-temperature SAW sensors.
Databáze: OpenAIRE